
CS 543: Computer Graphics
Lecture 9 (Part III): Raster Graphics: Drawing Lines

Emmanuel Agu

2D Graphics Pipeline

Object
World Coordinates

Object
subset

window to
viewport
mapping

Object
Screen coordinatesRasterizationDisplay

Applying
world window

Clipping

Simple 2D Drawing Pipeline

Rasterization (Scan Conversion)

n Convert high-level geometry description to pixel colors
in the frame buffer

n Example: given vertex x,y coordinates determine pixel
colors to draw line

n Two ways to create an image:
n Scan existing photograph
n Procedurally compute values (rendering)

Viewport
Transformation Rasterization

Rasterization

n A fundamental computer graphics function
n Determine the pixels’ colors, illuminations, textures, etc.
n Implemented by graphics hardware
n Rasterization algorithms

n Lines
n Circles
n Triangles
n Polygons

Rasterization Operations

n Drawing lines on the screen
n Manipulating pixel maps (pixmaps): copying, scaling,

rotating, etc
n Compositing images, defining and modifying regions
n Drawing and filling polygons

n Previously glBegin(GL_POLYGON), etc

n Aliasing and antialiasing methods

Line drawing algorithm

n Programmer specifies (x,y) values of end pixels
n Need algorithm to figure out which intermediate pixels

are on line path
n Pixel (x,y) values constrained to integer values
n Actual computed intermediate line values may be floats
n Rounding may be required. E.g. computed point

(10.48, 20.51) rounded to (10, 21)
n Rounded pixel value is off actual line path (jaggy!!)
n Sloped lines end up having jaggies
n Vertical, horizontal lines, no jaggies

Line Drawing Algorithm

0 1 2 3 4 5 6 7 8 9 10 11 12

8
7
6
5
4
3
2
1

Line: (3,2) -> (9,6)

? Which intermediate
pixels to turn on?

Line Drawing Algorithm

n Slope-intercept line equation
n y = mx + b
n Given two end points (x0,y0), (x1, y1), how to compute m

and b?

(x0,y0)

(x1,y1)

dx

dy

01
01

xx
yy

dx
dy

m
−
−

== 0*0 xmyb −=

Line Drawing Algorithm

n Numerical example of finding slope m:
n (Ax, Ay) = (23, 41), (Bx, By) = (125, 96)

5392.0
102
55

23125
4196

==
−
−

=
−
−

=
AxBx
AyBy

m

Digital Differential Analyzer (DDA): Line Drawing
Algorithm

(x0,y0)

(x1,y1)

dx

dy

§Walk through the line, starting at (x0,y0)
§Constrain x, y increments to values in [0,1] range
§Case a: x is incrementing faster (m < 1)
§Step in x=1 increments, compute and round y

§Case b: y is incrementing faster (m > 1)
§Step in y=1 increments, compute and round x

m<1

m>1

m=1

DDA Line Drawing Algorithm (Case a: m < 1)

(x0, y0)

x = x0 + 1 y = y0 + 1 * m

Illuminate pixel (x, round(y))

x = x + 1 y = y + 1 * m

Illuminate pixel (x, round(y))

…

Until x == x1

(x1,y1)

x = x0 y = y0

Illuminate pixel (x, round(y))

myy kk +=+1

DDA Line Drawing Algorithm (Case b: m > 1)

y = y0 + 1 x = x0 + 1 * 1/m

Illuminate pixel (round(x), y)

y = y + 1 x = x + 1 /m

Illuminate pixel (round(x), y)

…

Until y == y1

x = x0 y = y0

Illuminate pixel (round(x), y)
(x1,y1)

(x0,y0)

m
xx kk

1
1 +=+

DDA Line Drawing Algorithm Pseudocode

compute m;
if m < 1:
{

float y = y0; // initial value
for(int x = x0;x <= x1; x++, y += m)

setPixel(x, round(y));
}
else // m > 1
{

float x = x0; // initial value
for(int y = y0;y <= y1; y++, x += 1/m)

setPixel(round(x), y);
}
n Note: setPixel(x, y) writes current color into pixel in column x and

row y in frame buffer

Line Drawing Algorithm Drawbacks

n DDA is the simplest line drawing algorithm
n Not very efficient
n Round operation is expensive

n Optimized algorithms typically used.
n Integer DDA
n E.g.Bresenham algorithm (Hill, 10.4.1)

n Bresenham algorithm
n Incremental algorithm: current value uses previous value
n Integers only: avoid floating point arithmetic
n Several versions of algorithm: we’ll describe midpoint

version of algorithm

Bresenham’s Line-Drawing Algorithm

n Problem: Given endpoints (Ax, Ay) and (Bx, By) of a line,
want to determine best sequence of intervening pixels

n First make two simplifying assumptions (remove later):
n (Ax < Bx) and
n (0 < m < 1)

n Define
n Width W = Bx – Ax
n Height H = By - Ay

(Bx,By)

(Ax,Ay)

Bresenham’s Line-Drawing Algorithm

n Based on assumptions:
n W, H are +ve
n H < W

n As x steps in +1 increments, y incr/decr by <= +/–1
n y value sometimes stays same, sometimes increases by 1
n Midpoint algorithm determines which happens

Bresenham’s Line-Drawing Algorithm

(x0, y0)

M = (x0 + 1, Y0 + ½)

Build equation of line through and compare
to midpoint

…

(x1,y1) What Pixels to turn on or off?

Consider pixel midpoint M(Mx, My)

M(Mx,My)

If midpoint is above line, y stays same
If midpoint is below line, y increases + 1

Bresenham’s Line-Drawing Algorithm

n Using similar triangles:

n H(x – Ax) = W(y – Ay)
n -W(y – Ay) + H(x – Ax) = 0

n Above is ideal equation of line through (Ax, Ay) and (Bx, By)
n Thus, any point (x,y) that lies on ideal line makes eqn = 0
n Double expression (to avoid floats later), and give it a name,

F(x,y) = -2W(y – Ay) + 2H(x – Ax)

W
H

Axx
Ayy

=
−
−

(Bx,By)

(Ax,Ay)

(x,y)

Bresenham’s Line-Drawing Algorithm

n So, F(x,y) = -2W(y – Ay) + 2H(x – Ax)
n Algorithm, If:

n F(x, y) < 0, (x, y) above line
n F(x, y) > 0, (x, y) below line

n Hint: F(x, y) = 0 is on line
n Increase y keeping x constant, F(x, y) becomes more

negative

Bresenham’s Line-Drawing Algorithm

n Example: to find line segment between (3, 7) and (9, 11)

F(x,y) = -2W(y – Ay) + 2H(x – Ax)
= (-12)(y – 7) + (8)(x – 3)

n For points on line. E.g. (7, 29/3), F(x, y) = 0
n A = (4, 4) lies below line since F = 44
n B = (5, 9) lies above line since F = -8

Bresenham’s Line-Drawing Algorithm

(x0, y0)

M = (x0 + 1, Y0 + ½)

If F(Mx,My) < 0, M lies above line,
shade lower pixel (same y as before)

…

(x1,y1) What Pixels to turn on or off?

Consider pixel midpoint M(Mx, My)

M(Mx,My)

If F(Mx,My) > 0, M lies below line,
shade upper pixel

Can compute F(x,y) incrementally

Initially, midpoint M = (Ax + 1, Ay + ½)
F(Mx, My) = -2W(y – Ay) + 2H(x – Ax)

= 2H – W
Can compute F(x,y) for next midpoint incrementally

If we increment x + 1, y stays same, compute new F(Mx,My)
F(Mx, My) += 2H

If we increment x +1, y + 1
F(Mx, My) -= 2(W – H)

Bresenham’s Line-Drawing Algorithm

Bresenham(IntPoint a, InPoint b)
{ // restriction: a.x < b.x and 0 < H/W < 1

int y = a.y, W = b.x – a.x, H = b.y – a.y;
int F = 2 * H – W; // current error term
for(int x = a.x; x <= b.x; x++)
{

setpixel at (x, y); // to desired color value
if F < 0

F = F + 2H;
else{

Y++, F = F + 2(H – W)
}

}
}
n Recall: F is equation of line

Bresenham’s Line-Drawing Algorithm

n Final words: we developed algorithm with restrictions
0 < m < 1 and Ax < Bx

n Can add code to remove restrictions
n To get the same line when Ax > Bx (swap and draw)
n Lines having m > 1 (interchange x with y)
n Lines with m < 0 (step x++, decrement y not incr)
n Horizontal and vertical lines (pretest a.x = b.x and skip tests)

n Important: Read Hill 10.4.1

References

n Hill, chapter 10

