# CS 543: Computer Graphics Lecture 9 (Part I): Raster Graphics Part 1 

Emmanuel Agu

## 2D Graphics Pipeline



## Rasterization (Scan Conversion)

- Convert high-level geometry description to pixel colors in the frame buffer
- Example: given vertex x,y coordinates determine pixel colors to draw line
- Two ways to create an image:
- Scan existing photograph
- Procedurally compute values (rendering)



## Rasterization

- A fundamental computer graphics function
- Determine the pixels' colors, illuminations, textures, etc.
- Implemented by graphics hardware
- Rasterization algorithms
- Lines
- Circles
- Triangles
- Polygons


## Rasterization Operations

- Drawing lines on the screen
- Manipulating pixel maps (pixmaps): copying, scaling, rotating, etc
- Compositing images, defining and modifying regions
- Drawing and filling polygons
- Previously glBegin(GL_POLYGON), etc
- Aliasing and antialiasing methods


## Line drawing algorithm

- Programmer specifies $(x, y)$ values of end pixels
- Need algorithm to figure out which intermediate pixels are on line path
- Pixel ( $x, y$ ) values constrained to integer values
- Actual computed intermediate line values may be floats
- Rounding may be required. E.g. computed point $(10.48,20.51)$ rounded to $(10,21)$
- Rounded pixel value is off actual line path (jaggy!!)
- Sloped lines end up having jaggies
- Vertical, horizontal lines, no jaggies


## Line Drawing Algorithm



## Line Drawing Algorithm

- Slope-intercept line equation
- $y=m x+b$
- Given two end points $(x 0, y 0),(x 1, y 1)$, how to compute $m$ and $b$ ?

$$
m=\frac{d y}{d x}=\frac{y 1-y 0}{x 1-x 0} \quad b=y 0-m * x 0
$$



## Line Drawing Algorithm

- Numerical example of finding slope m:
- $(A x, A y)=(23,41),(B x, B y)=(125,96)$

$$
m=\frac{B y-A y}{B x-A x}=\frac{96-41}{125-23}=\frac{55}{102}=0.5392
$$

## Digital Differential Analyzer (DDA): Line Drawing Algorithm

-Walk through the line, starting at ( $x 0, y 0$ )
-Constrain $x, y$ increments to values in [0,1] range
-Case a: $x$ is incrementing faster $(m<1)$
-Step in $x=1$ increments, compute and round $y$
-Case b: y is incrementing faster $(\mathrm{m}>1)$
-Step in $\mathrm{y}=1$ increments, compute and round x


## DDA Line Drawing Algorithm (Case a: m < 1)

$$
y_{k+1}=y_{k}+m
$$



$$
x=x 0 \quad y=y 0
$$

Illuminate pixel ( $x$, round(y))
$x=x 0+1 \quad y=y 0+1 * m$

Illuminate pixel ( $x$, round(y))
$x=x+1$

$$
y=y+1 * m
$$

Illuminate pixel ( $x$, round( $y$ ))

Until $x==x 1$

## DDA Line Drawing Algorithm (Case b: m > 1)


$x=x 0 \quad y=y 0$
Illuminate pixel (round(x), y)
$y=y 0+1 \quad x=x 0+1 * 1 / m$

Illuminate pixel (round $(x), y)$
$y=y+1$
$x=x+1 / m$

Illuminate pixel (round $(x), y)$

Until $\mathrm{y}==\mathrm{y} 1$

## DDA Line Drawing Algorithm Pseudocode

```
compute m;
if m}< 1
{
    float y = y0; // initial value
    for(int x = x0; x <= x1; x++, y += m)
    setPixel(x, round(y));
}
else // m > 1
{
\[
\begin{aligned}
& \text { float } x=x 0 ; \quad \text { // initial value } \\
& \text { for (int } y=y 0 ; y<=y 1 ; y++, x+=1 / m) \\
& \\
& \quad \text { setPixel (round }(x), y) ;
\end{aligned}
\]
\}
- Note: setPixel ( \(\mathbf{x}, \mathbf{y}\) ) writes current color into pixel in column \(x\) and row \(y\) in frame buffer
```


## Line Drawing Algorithm Drawbacks

- DDA is the simplest line drawing algorithm
- Not very efficient
- Round operation is expensive
- Optimized algorithms typically used.
- Integer DDA
- E.g.Bresenham algorithm (Hill, 10.4.1)
- Bresenham algorithm
- Incremental algorithm: current value uses previous value
- Integers only: avoid floating point arithmetic
- Several versions of algorithm: we'll describe midpoint version of algorithm


## Bresenham's Line-Drawing Algorithm

- Problem: Given endpoints (Ax, Ay) and (Bx, By) of a line, want to determine best sequence of intervening pixels
- First make two simplifying assumptions (remove later):
- ( $A x<B x$ ) and
- $(0<m<1)$
- Define
- Width $W=B x-A x$
- Height $H=B y-A y$


## Bresenham's Line-Drawing Algorithm

- Based on assumptions:
- W, H are +ve
- $\mathrm{H}<\mathrm{W}$
- As $x$ steps in +1 increments, $y$ incr/decr by <= +/-1
- y value sometimes stays same, sometimes increases by 1
- Midpoint algorithm determines which happens


## Bresenham's Line-Drawing Algorithm



What Pixels to turn on or off?
Consider pixel midpoint $M(M x, M y)$
$M=(x 0+1, Y 0+1 / 2)$

Build equation of line through and compare to midpoint

If midpoint is above line, $y$ stays same If midpoint is below line, $y$ increases +1

## Bresenham's Line-Drawing Algorithm

- Using similar triangles:

$$
\frac{y-A y}{x-A x}=\frac{H}{W}
$$

(Ax,Ay)

$$
\begin{gathered}
H(x-A x)=W(y-A y) \\
-W(y-A y)+H(x-A x)=0
\end{gathered}
$$

- Above is ideal equation of line through ( $A x, A y$ ) and ( $B x, B y$ )
- Thus, any point ( $x, y$ ) that lies on ideal line makes eqn $=0$
- Double expression (to avoid floats later), and give it a name,

$$
F(x, y)=-2 W(y-A y)+2 H(x-A x)
$$

## Bresenham's Line-Drawing Algorithm

- So, $F(x, y)=-2 W(y-A y)+2 H(x-A x)$
- Algorithm, If:
- $F(x, y)<0,(x, y)$ above line
- $F(x, y)>0,(x, y)$ below line
- Hint: $F(x, y)=0$ is on line
- Increase y keeping $x$ constant, $F(x, y)$ becomes more negative


## Bresenham's Line-Drawing Algorithm

- Example: to find line segment between $(3,7)$ and $(9,11)$

$$
\begin{aligned}
F(x, y) & =-2 W(y-A y)+2 H(x-A x) \\
& =(-12)(y-7)+(8)(x-3)
\end{aligned}
$$

- For points on line. E.g. (7, 29/3), $F(x, y)=0$
- $A=(4,4)$ lies below line since $F=44$
- $B=(5,9)$ lies above line since $F=-8$


## Bresenham's Line-Drawing Algorithm



What Pixels to turn on or off?
Consider pixel midpoint $M(M x, M y)$
$M=(x 0+1, Y 0+1 / 2)$

If $\mathrm{F}(\mathrm{Mx}, \mathrm{My})<0, \mathrm{M}$ lies above line, shade lower pixel (same y as before)

If $F(M x, M y)>0, M$ lies below line, shade upper pixel

## Can compute $F(x, y)$ incrementally

Initially, midpoint $M=(A x+1, A y+1 / 2)$
$F(M x, M y)=-2 W(y-A y)+2 H(x-A x)$

$$
=2 \mathrm{H}-\mathrm{W}
$$

Can compute $\mathrm{F}(\mathrm{x}, \mathrm{y})$ for next midpoint incrementally

If we increment $x+1$, $y$ stays same, compute new $F(M x, M y)$ $F(M x, M y)+=2 H$

If we increment $x+1, y+1$

$$
F(M x, M y)-=2(W-H)
$$

## Bresenham's Line-Drawing Algorithm

Bresenham(IntPoint a, InPoint b)
\{ // restriction: $\mathrm{a} . \mathrm{x}<\mathrm{b} . \mathrm{x}$ and $0<\mathrm{H} / \mathrm{W}<1$
int $y=a . y, W=b . x-a \cdot x, H=b . y-a . y$;
int $F=2$ * $H-W$; // current error term
for(int $x=a . x ; x<=b . x ; x++$ )
\{
setpixel at ( $\mathrm{x}, \mathrm{y}$ ); // to desired color value if $F<0$
$F=F+2 H ;$
else\{
$Y++, F=F+2(H-W)$ \}
\}
\}

- Recall: $F$ is equation of line


## Bresenham's Line-Drawing Algorithm

- Final words: we developed algorithm with restrictions $0<m<1$ and $A x<B x$
- Can add code to remove restrictions
- To get the same line when $A x>B x$ (swap and draw)
- Lines having $m>1$ (interchange $x$ with $y$ )
- Lines with $m<0$ (step $x++$, decrement $y$ not incr)
- Horizontal and vertical lines (pretest a.x = b.x and skip tests)
- Important: Read Hill 10.4.1


## References

- Hill, chapter 10

