CS 543: Computer Graphics Midterm review

Emmanuel Agu

Exam Overview

- Wednesday, Oct. 17, in-class
- Will cover up to today's lecture (Illumination and Shading)
- Can bring:
 - One page cheat-sheet, hand-written (not typed)
 - Calculator
- Will test:
 - Theoretical concepts
 - Mathematics
 - Algorithms
 - Programming
 - OpenGL knowledge (program structure and some commands)

What am I Really Testing?

- Understanding of
 - concepts (NOT only programming)
 - programming (pseudocode/syntax)
- Test that:
 - you can plug in numbers by hand to check your programs
 - you did the projects
 - you understand what you did in projects

General Advise

- Read your projects and refresh memory of what you did
- Read the slides: worst case if you understand slides, you're more than 50% prepared
- Focus on Mathematical results, concepts, algorithms
- Plug numbers: calculate by hand
- Should be able to predict subtle changes to algorithm... What ifs?..
- Past exams: Some on website, I taught fall 2005. This exam will resemble mostly fall 2005
- Every lecture has references. Look at refs to focus reading
- Do all readings I asked you to do on your own

Grading Policy

- I do ALL grading myself
- Give you all the points, take away only what I have to
- In time constraints, laying out outline of solution gets you healthy chunk of points
- Try to write something for each question
- Many questions will be easy, exponentially harder to score higher in exam

Introduction

- Motivation for CG
- Uses of CG (simulation, image processing, movies, viz, etc)
- Elements of CG (polylines, raster images, filled regions, etc)
- Device dependent graphics libraries (OpenGL, DirectX, etc)

OpenGL/GLUT

High-level:

- What is OpenGL?
- What is GLUT?
- Functionality, how do they work together?
- Design features: low-level API, event-driven, portability, etc
- Sequential Vs. Event-driven programming
- OpenGL/GLUT program structure (create window, init, callback registration, etc)
- GLUT callback functions (registration and response to events)

OpenGL Drawing

- glBegin(), glEnd(), glVertex()
- OpenGL :
 - Drawing primitives: GL_POINTS, GL_LINES, etc (should be conversant with the behaviors of major primitives)
 - Command format
 - Data types
 - Interaction: keyboard, mouse (GLUT_LEFT_BUTTON, etc)
 - OpenGL state

2D Graphics: Coordinate Systems

- Screen coordinate system/Viewport
- World coordinate system/World window
- Window to Viewport mapping:
 - Motivation: why is it necessary?
 - OpenGL way: gluOrtho2D(left, right, bottom, top) glViewport (left, bottom, right-left, top-bottom)
 - Our way: calculate mapping
 - Applications: tiling, zooming, flipping, maintaining aspect ratio
- Cohen-sutherland clipping
 - algorithm operation
 - Why and how to do trivial accept/reject, chop
 - Given vertices, clip!!

Fractals

What are fractals?

- Self similarity
- Applications (clouds, grass, terrain etc)
- Koch curves/snowflakes
 - How to build K1, K2, etc... S1, S2, etc.
 - Pseudocode: how to draw
- Mandelbrot set
 - Complex numbers: s, c, orbits, complex number math
 - Dwell function
 - Assigning colors
 - Mapping mandelbrot to screen

Points, Scalars Vectors

- Vector Operations:
 - Addition, subtraction, scaling
 - Magnitude
 - Normalization
 - Dot product
 - Cross product
 - Finding angle between two vectors
- Standard unit vector
- Normal of a plane

Transforms

- Homogeneous coordinates Vs. Ordinary coordinates
- 2D/3D affine transforms: rotation, scaling, translation, shearing
- Should be able to take problem description and build transforms and apply to vertices
- 2D: rotation (scaling, etc) about arbitrary center:
 - T(Px,Py) R(θ) T(-Px,-Py) * P
- Composing transforms
- OpenGL transform commands (glRotate, glTranslate, etc)
- **3**D rotation:
 - x-roll, y-roll, z-roll, about arbitrary vector (Euler theorem) if given azimuth, latitude of vector or (x, y, z) of normalized vector
- Matrix multiplication!!

Modeling

- GLUT models (teapot, sphere, cube, etc)
- Overview of openGL
 - Modelview matrix (M and V part)
 - Projection matrix
 - Clipping
 - Viewport
- Should know high-level what each stage does
- OpenGL matrices: what are they? How to select, initialize, compose
- Hierachical modeling using OpenGL (glPopMatrix, glPushMatrix)
- SDL

Illumination and Shading

- Illumination models
 - Light types (point, extended, etc)
 - Global vs local illumination
 - Ambient, diffuse, specular
 - Phong light model
 - OpenGL lighting, material commands