
CS 563 Advanced Topics in
Computer Graphics

Billboard Clouds

by Jared Krechko

Presentation Overview

§ Overview of Billboard Clouds
§ Big picture
§ Videos

§ How to Compute Billboard Clouds
§ Lots of formulas and algorithms

§ Optimizing Cloud Selection

§ Developments Since the Article

What is a billboard cloud?

§ Extreme simplification of object

§ Project object surfaces onto plane

§ Arrange planes so the object looks like the original
rendered object

§ Can track surface normals so relighting is possible

Why use billboard clouds?

§ Simplified geometry

§ Improve rendering time

§ More detailed than other simplification methods like
impostors or billboards

§ Series of textures (texture operations)

Videos

§ Eiffel Tower

§ Overview of how to obtain a billboard cloud
simplification

Videos from: http://w3imagis.imag.fr/Publications/2003/DDSD03/index.gb.html

Steps to Create Billboard
Clouds

§ Obtain density of planes
§ Coverage, validity and penalty

§ Select appropriate planes based on density
§ Bins to select highest density

§ Compute textures

Selecting appropriate planes

§ Define density
§ d(P) = C(P) – Penalty(P)

§ C(P) is coverage, or the amount of faces for which P
is valid

§ Penalty(P) is used to prevent undesirable planes, i.e.
locally optimal but globally costly

Plane Validity

§ A plane is valid if ||vp||<?
§ v is a point on the object
§ p is a point on the plane
§ ? is a defined error margin

§ Validity domain of a point – set of planes that can
represent a point

§ Valid for polygon – plane is valid if all vertices of
polygon are valid

§ Validity domain of a face – intersection of validity
domains for its vertices

§ Goal: Find minimal set of planes {Pi} so for each
face, there is one i such that the face is valid on a
plane

Plane Coverage

§ Size of a validity set – how many primitives are valid
on the plane

§ Makes many small surfaces count more

§ Add projected area on the plane

§ Finally, C(P) = Sum(projected area on the plane(
each face being projected))

Penalty

§ Goal: Prevent planes that miss nearby faces
§ Small faces hard to simplify, so more computation

http://w3imagis.imag.fr/Publications/2003/DDSD03/bc03.pdf

Penalty

§ Favor planes that are near tangent
§ Each face can add penalty to planes that miss them
§ A plane misses a face if
§ The plane is not valid for the face
§ There exists another plane within the given error ? when

translated along the normal that is valid

§ Penalty(P) = W*Sum(area of faces that are in the
miss set)
§ W is a penalty weight (10 usually), used to strongly prevent

using planes that closely miss primitives

Discretizing Plane Space

§ Estimate density in discretized plane space

§ Parameterize planes using spherical coordinates
(?,F) for normal direction, and ? for distance to
origin

§ Set of planes going through a point defines a sheet
?=f (?,F)

§ 3D equivalent of Hough Transform

Discretizing Plane Space

§ Hough Transform
§ Method to find straight lines in large amounts of data

§ Hough Space
§ Each point (d,T) is a line at angle T a distance of d from the

origin in the data space

§ Increment T a set amount and compute d
§ Value of function in Hough space gives density
§ High value corresponds to a line that goes through a lot of

points

http://www.anc.ed.ac.uk/~amos/hough.html

Discretizing Plane Space

§ We do Hough Transform in 3D

http://w3imagis.imag.fr/Publications/2003/DDSD03/bc03.pdf

Discretizing Plane Space

§ Divide parameter space into bins

§ Compute density for each bin

§ Consider all bins that intersect a face valid
for that face to reduce artifacts

§ Density of bin – sum coverage and penalty
values for each face valid for the bin

Greedy Optimization

§ Pick bin with highest density
§ Search for a plane in the bin that can eliminate the

set of valid faces
§ Update density due to removed faces
§ Go to next highest density bin
§ Then, compute textures for the selected planes

http://w3imagis.imag.fr/Publications/2003/DDSD03/bc03.pdf

Refine Bin

§ Used simple validity to compute density (any bin that
intersects a face is valid for that face)

§ Not always most dense
§ Use algorithm to get most dense plane

http://w3imagis.imag.fr/Publications/2003/DDSD03/bc03.pdf

Compute Textures

§ Each plane assigned a set of faces during greedy
algorithm

§ Find bounding rectangle, then orthographically
project onto plane

§ Use black background for texture
§ Compute normal map at same time to relight
§ If a face belongs to a valid set of multiple planes,

render it on all planes to reduce cracks between
billboards

Optimize Texture Usage

§ Restrict billboards that have mostly empty spaces by
introducing a compact set

§ Restrict in greedy algorithm to compact subsets of
bins for each face

§ Break validity set for each bin for each face into
clusters

§ Pick the most dense cluster

Effect of Error Bound

http://w3imagis.imag.fr/Publications/2003/DDSD03/bc03.pdf

Examples

http://w3imagis.imag.fr/Publications/2003/DDSD03/bc03.pdf

Examples

http://w3imagis.imag.fr/Publications/2003/DDSD03/bc03.pdf

Examples

http://www.csail.mit.edu/research/abstracts/abstracts03/interfaces-applications/10decoret.pdf

Examples

http://www.cs.wpi.edu/~emmanuel/MQPs/extreme_simplification/data.htm

Conclusions

§ A good way to take the complicated geometry out of
models

§ Still further areas to develop but looks promising

§ Widely used soon?

Beyond Billboard Clouds

§ Hybrid Billboard Clouds
§ Presented at SIGGRAPH 2004

§ Use part mesh, part billboard to simplify models

§ Combine strengths of image-based rendering and full model
rendering

§ Basically compute a cost for billboard and geometric model
and pick the lesser of the two

BTF Textured Billboard
Clouds

§ Bidirectional Textured Function Billboard Clouds
§ Recover self-shadowing, reflectance properties and

changing silhouettes
§ Memory efficient storage of such properties to make

rendering “quick”
§ Uses less resources but still uses a lot

http://cg.cs.uni-bonn.de/docs/publications/2004/meseth-2004-memory.pdf

Improved Methods

§ Improved algorithms

§ K-means clustering
§ Set number of billboards so can vary complexity

§ Reducing cracks in images
§ Compute triangles on multiple planes

Future Methods

§ Improve greedy algorithm

§ Apply more texture operations on the billboards
themselves

§ Other improvements?

References
§ Bromberg-Martin, Ethan et. al. “Hybrid Billboard Clouds for Model Simplification.” Brown

University. http://graphics.cs.brown.edu/games/HybridBillboardClouds/bromberg-jonsson-
marai-mcguire-2004-hybrid.pdf

§ Décoret, Xavier et. al. “Billboard Clouds for Extreme Model Simplification.”
http://w3imagis.imag.fr/Publications/2003/DDSD03/bc03.pdf

§ Décoret, Xavier et. al. “Billboard Clouds for Extreme Model Simplification.” MIT Laboratory
for Computer Science, March 2003.
http://www.csail.mit.edu/research/abstracts/abstracts03/interfaces-
applications/10decoret.pdf

§ Huang, I.-T., et. al. “Improved Billboard Clouds for Extreme Model Simplification.”
University of Auckland.
http://www.cs.auckland.ac.nz/~burkhard/Publications/IVCNZ04_HuangNovinsWuensche.p
df

§ Lehtinen, Tuomo. “Billboard Clouds.” Helsinki University of Technology, 2004.
http://www.tml.hut.fi/Opinnot/Tik-111.500/2004/papers_final/Lehtinen_final.pdf

§ Meseth, Jan and Reinhard Klein. “Memory Efficient Billboard Clouds for BTF Textured
Objects.” University of Bonn. http://cg.cs.uni-bonn.de/docs/publications/2004/meseth-
2004-memory.pdf

§ Moreno-Fortuny, Gabriel. “Billboard Clouds.” University of Waterloo.
http://www.cgl.uwaterloo.ca/~gmoreno/bclouds.html

§ Reynolds, John et. al. “Extreme Graphical Simplification.” Worester Polytechnic Institute.
April 28, 2004.
http://www.cs.wpi.edu/~emmanuel/MQPs/extreme_simplification/Documents/EGSReport.p
df

§ Reynolds, John et. al. “Extreme Graphical Simplification – Project Data.” Worester
Polytechnic Institute. April 28, 2004.
http://www.cs.wpi.edu/~emmanuel/MQPs/extreme_simplification/data.htm

§ Storkey, Amos. “Hough Transform.” Institute for Adaptive and Neural Computation.
http://www.anc.ed.ac.uk/~amos/hough.html

