CS 563 Advanced Topics In
Computer Graphics
Intro to Vertex and Pixel Shaders

by Matthew Maziarz



History before Shaders
= Pre-Hardware T/L
= Hardware T/L

Vertex Shaders
Pixel Shaders

Extras

References



= Prior to 1999 all Transformation and Lighting
was done by the CPU

= This caused the CPU to do almost all the
WOrk

* Could use assembly to make the card do
more of the work



= 1999 cards introduced Hardware T/L

* This moved the transformation and lighting to the
card which alleviated some work from the CPU

* The problem was this was a fixed function
pipeline

*= Once you sent it to the card you had no control

» Forced programmers to use basic Gouraud/Phong

for lighting because it was the only model
supported



= "Shading iIs the assignment of colors - or
more specifically - outoging radiance, to
points on a surface” [pg 5 Real Time Shading]

= Vertex and Pixel shaders do much more,
iIncluding manipulation and movement of

vertices.



= Both Pixel and Vertex Shader can be used if
APl supports even if card does not. It will
run on CPU (slow)

» Both the fixed pipeline and programmable
can be used, just not In parrallel

* Limited number of Instructions (keep getting
raised)



= Must be compiled, usually at run-time
= Nvidia
= Vertex Shader -> Texture Shader -> Register Combiner

= Texture Shader not really programmable, just choose some
options

= Direct X
= Vertex Shader -> Pixel Shader

= Shader languages are inherently different
from most programming languages They are
based on a data flow computational model,
In other words, computation Is dependant on
that data that comes In.
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16 input registers.

9 output registers for GeForce cards and 11
for Radeon cards.

96 constant registers for GeForce cards and
192 for Radeon cards.

12 temporary registers.

1 address register (for vertex shader version
vs.2.0).



= Reasons why
* Procedural Geometry (cloth)
= Particle Systems
= Advanced Animation Interpolation
* Lens Effects
= Newer Lighting effects

= Can Change
= Position, Color, Size, Texture Coordinates
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= Does

= Can load and unload different shaders to only run
some shaders on certain streams of vertices

= If card supports multiple shaders they can run in
parallel on multiple processing units

» Each vertex take same amount of time to pass
through shader



= Don’ts
= Vertices cannot be created or destroyed
= Can be moved off screen

= Each vertex independent of others so vertices
cannot share information

= This is what allows you to run in parallel if hardward
supports it

= No loops or GoTo commands (yet)
= Certain hardware are now trying to implement this



8 constant registers.

4 texture registers (6 in DirectX pixel shader
version ps.1.4).

2 temporary registers (6 in DirectX pixel
shader version ps.1.4).

2 color registers.



= Reasons Why
= Single Pass per-pixel lighting (true phong)
= Anisotropic Lighting
= Cell/Toon/Non-Photorealistic rendering
» Volumetric effects
* Procedural textures
* Horizon (self-shadowing bump) maps

= Can Change

» Perform math on texture coordinates
= Use texture lookups to modify other textures
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= Addressing Instructions
= Used to look up values in a texture

= Depending on instruction can treat the coordinate

= As standard lookup
= Vector
= Part of matrix

* You can also kill fragments

» Addressing Instruction do not perform operation
but they set up the data in a specific form



» Courtesy of Stupid OpenGL Shader Tricks
by Simon Green
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Here are some recommended links for
peginning with shaders

nttp:.//nehe.gamedev.net/data/lessons/lesso
n.asp?lesson=47

= A simple pseudo water vertex shader, also
walksthrough the opengl code to load and run
shader

Shader Programming by Wolfgang Engel
http://www.gamedev.net/columns/hardcore/
dxshaderl/

» Beginner Direct X vertex and pixel shader paper

Best place would be NVidia's CG Toolkit
= A little more advanced but a ton of examples
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