CS 563 Advanced Topics In
Computer Graphics
Intro to Vertex and Pixel Shaders

by Matthew Maziarz

History before Shaders
= Pre-Hardware T/L
= Hardware T/L

Vertex Shaders
Pixel Shaders

Extras

References

= Prior to 1999 all Transformation and Lighting
was done by the CPU

= This caused the CPU to do almost all the
WOrk

* Could use assembly to make the card do
more of the work

= 1999 cards introduced Hardware T/L

* This moved the transformation and lighting to the
card which alleviated some work from the CPU

* The problem was this was a fixed function
pipeline

*= Once you sent it to the card you had no control

» Forced programmers to use basic Gouraud/Phong

for lighting because it was the only model
supported

= "Shading iIs the assignment of colors - or
more specifically - outoging radiance, to
points on a surface” [pg 5 Real Time Shading]

= Vertex and Pixel shaders do much more,
iIncluding manipulation and movement of

vertices.

= Both Pixel and Vertex Shader can be used if
APl supports even if card does not. It will
run on CPU (slow)

» Both the fixed pipeline and programmable
can be used, just not In parrallel

* Limited number of Instructions (keep getting
raised)

= Must be compiled, usually at run-time
= Nvidia
= Vertex Shader -> Texture Shader -> Register Combiner

= Texture Shader not really programmable, just choose some
options

= Direct X
= Vertex Shader -> Pixel Shader

= Shader languages are inherently different
from most programming languages They are
based on a data flow computational model,
In other words, computation Is dependant on
that data that comes In.

High-Order-Surfaces
) | Tesselation
Vertices
=ource Crparations
Transformation & Vertax Shader
Lighting
1
Face Culling

User Clip Planes
Frustrum Clipping
Homogenous Divide
Wiewport Mapping

| WVerex Dperabions

Triangle Setup
Rasterization

hulti sarmpli ng

hu ltitexturi ng Co<aT Fixel Shader

i

i

Fog Effects

|
Alpha Test
|
Srencil, Dapth Test [4—
|
Alpha Blending (e
|

Diter S http://www.gamedev.net

Channel Mask /columns/hardcore/dxs

Fender Target fa— haderllpagez . aSp

[
Cisplay

16 input registers.

9 output registers for GeForce cards and 11
for Radeon cards.

96 constant registers for GeForce cards and
192 for Radeon cards.

12 temporary registers.

1 address register (for vertex shader version
vs.2.0).

= Reasons why
* Procedural Geometry (cloth)
= Particle Systems
= Advanced Animation Interpolation
* Lens Effects
= Newer Lighting effects

= Can Change
= Position, Color, Size, Texture Coordinates

Vertex ;!
Pregram § i Fatch&Dlen-l:h- s
Instruction § b o Mext I a

Memory

v

Input Registers Read Input l

Termporary Reg

Vertex

Program
Tnstruction ¢
Loop B

Temporary
Registers

Output
Registers

E -n---l-l------l..-lili---..l-l-!}

Pg 18 The CG

Tutorial Figure 1-8. Programmable Vertex Processor Flow Chart

= Does

= Can load and unload different shaders to only run
some shaders on certain streams of vertices

= If card supports multiple shaders they can run in
parallel on multiple processing units

» Each vertex take same amount of time to pass
through shader

= Don’ts
= Vertices cannot be created or destroyed
= Can be moved off screen

= Each vertex independent of others so vertices
cannot share information

= This is what allows you to run in parallel if hardward
supports it

= No loops or GoTo commands (yet)
= Certain hardware are now trying to implement this

8 constant registers.

4 texture registers (6 in DirectX pixel shader
version ps.1.4).

2 temporary registers (6 in DirectX pixel
shader version ps.1.4).

2 color registers.

= Reasons Why
= Single Pass per-pixel lighting (true phong)
= Anisotropic Lighting
= Cell/Toon/Non-Photorealistic rendering
» Volumetric effects
* Procedural textures
* Horizon (self-shadowing bump) maps

= Can Change

» Perform math on texture coordinates
= Use texture lookups to modify other textures

Pg 20
‘The CG Tutorial

17 vauUaU IUWEBRY 215M 0 no SMO[Pe s 8+

Heyy mo)y d0ssanouy HUawsely a)qeww e130id '6-r aunsg) 94

§ 10103 5 yidag
inding

.., lﬂdll'lﬂm 4------1-'l-l--lr-----q-------------1-------------

: | Ansoduwsa; S
T g - - ‘

19457 19 $5auppy e=a-n.
: 'mn_;_amdl.uog

B ‘B18BoN, ‘wizzimg
CImane nduy degy

.- on - B S
s e o b B 3 l.lﬂ!::lﬂ-ﬂ!ﬂ.lj
T : ¥ weibosy
uewbey

 azeny

_ Temp
onstant Registers
Registers

lamped Artthmetic RGBA output
Diffued and Logic
Specular Unat z-depth output

Texture —te _

Pg 221 Real Time Rendering

= Addressing Instructions
= Used to look up values in a texture

= Depending on instruction can treat the coordinate

= As standard lookup
= Vector
= Part of matrix

* You can also kill fragments

» Addressing Instruction do not perform operation
but they set up the data in a specific form

» Courtesy of Stupid OpenGL Shader Tricks
by Simon Green

M Hender(sl

Here are some recommended links for
peginning with shaders

nttp:.//nehe.gamedev.net/data/lessons/lesso
n.asp?lesson=47

= A simple pseudo water vertex shader, also
walksthrough the opengl code to load and run
shader

Shader Programming by Wolfgang Engel
http://www.gamedev.net/columns/hardcore/
dxshaderl/

» Beginner Direct X vertex and pixel shader paper

Best place would be NVidia's CG Toolkit
= A little more advanced but a ton of examples

Akenine-Moller, Tomas. “Real-Time Rendering”.
Second Edition. 2002. AK Peters, Ltd.

Fernando, Randima and Kilgard, Mark. “The CG
Tutorial”. 2003. Adddison-Wesley

Olano, M. Hart, J. Heidrich, W. and McCool, M.
"Real-Time Shading" A K Peters Publishers, 2002

http://nehe.gamedev.net/data/lessons/lesson.asp?le
sson=47/

Shader Programming by Wolfgang Engel

http://www.gamedev.net/columns/hardcore/dxshade
rl/

http://www.ultimategameprogramming.com/articles/
VertexPixelShaderIntro3.php

http://www.devmaster.net/articles/shaders/

