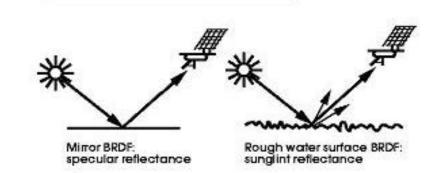


BRDF Rendering

CS 563 Advanced Topics in Computer Grahpics Songxiang Gu Feb, 11, 2005

Lighting Diffuse Surface

- Diffuse Unshadowed Transfer
- Shadowed Diffuse Transfer

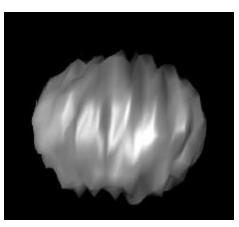


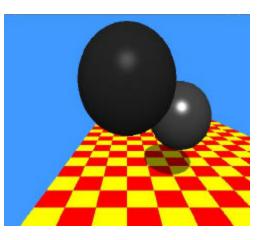
Phong Model

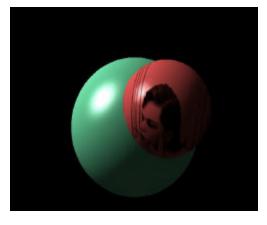
- Phong model
 - $L_{tot} = L_{amb} + L_{diff} + L_{spec}$ = f (? , ? , ? , $V_{x'}$, $V_{y'}$, $V_{z'}$, time)
 - No way to describe different materials.

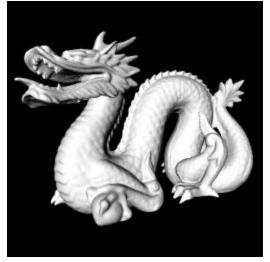
Distribution Functions: Causes

Why the surface of different materials are different?


Discussion Topics


- Why we use BRDF?
 - Phong model is powerless for the material presentation
 - No previous lighting model can deal with the anisotropic surfaces
- What is BRDF?
 - Bidirectional Reflectance Distribution Function
 - --- M. Shibayama, CL Wiegand, 1985, "Remote Sensing Environment"
- How to render a surface with BRDF?
 - Data Sampling
 - Monte Carlo Integration
 - Data compression


Why we use BRDF?


Phong model for diffusion surface

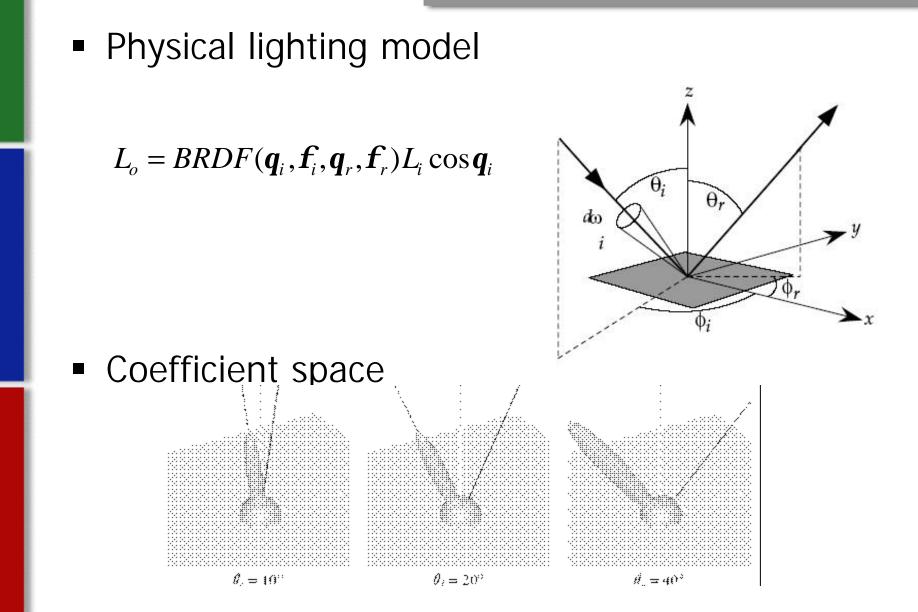
Result of the BRDF

BRDF (BSSRDF) model for the same object



 We have known the reason we prefer to BRDF.

What is **BRDF**?

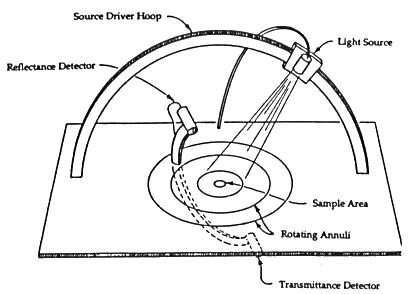

BRDF is a lighting model

$$L_o = \sum_{j=1}^n BRDF \quad (\boldsymbol{q}_i^{j}, \boldsymbol{f}_i^{j}, \boldsymbol{q}_r, \boldsymbol{f}_r) L_i^j \cos \boldsymbol{q}_i^{j}$$

- The relationship between BRDF and Phong
 - Phong lighting model can be looked at as a special case of general BRDF based lighting.

$$I_{out} = I_m (k_d (\mathbf{L} \bullet \mathbf{N}) + k_i (\mathbf{R} \bullet \mathbf{V})^n) = --- \text{Phong}$$
$$L_o = L_i Refl(\mathbf{L}, \mathbf{V}) = --- \text{BRDF}$$

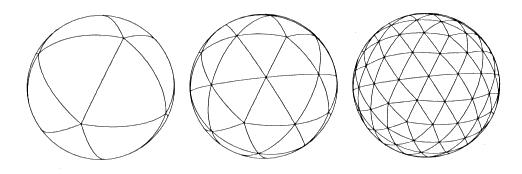
Render With BRDF



Lighting models

Different Lighting models $y_l^m(\theta, \varphi) = \begin{cases} \sqrt{2}K_l^m \cos \theta \\ \sqrt{2}K_l^m \sin \theta \\ K_l^0 P_l^0 (\cos \theta) \end{cases}$

Coefficient Acquisition

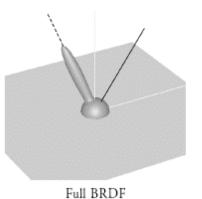

- Monte Carlo Integration
 - Lighting models
- Real data sampling

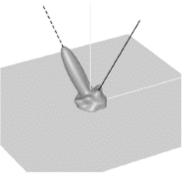
Data Sampling

3-D BRDF data sampling

Coefficient Matrix for BRDF

$$L_{o} = \sum_{j=1}^{n} BRDF (\boldsymbol{q}_{i}^{j}, \boldsymbol{f}_{i}^{j}, \boldsymbol{q}_{o}, \boldsymbol{f}_{o}) L_{i}^{j} \cos \boldsymbol{q}_{i}^{j}$$


Interpolation


Coefficient compression

Sysmatric Simplification

$$L_o = BRDF(\boldsymbol{q}_i, 0, \boldsymbol{q}_r, \boldsymbol{f}_r - \boldsymbol{f}_i)L_i \cos \boldsymbol{q}_i$$

DCT transformation

High-frequency components removed

Wavelet transformation

Map 4-D to 2-D

- Graphics Hardware only provide support for 2D textures BRDF(θ_i, φ_i, θ_r, φ_r) = G(θ_i, φ_i)·H(θ_r, φ_r)
 - $L_o = G(\boldsymbol{q}_i, \boldsymbol{f}_i) \cdot H(\boldsymbol{q}_r, \boldsymbol{f}_r) L_i \cos \boldsymbol{q}_i$
- Normalized-Decomposition approach

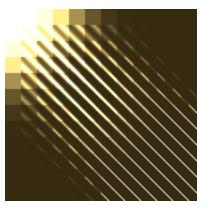
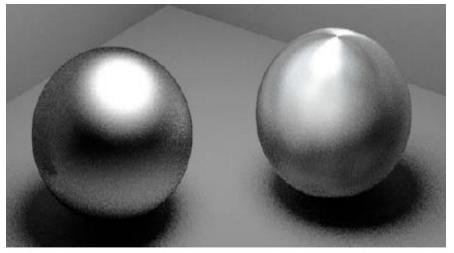


Image of the sampled "true" BRDF matrix.



The "approximate" BRDF matrix reconstructed using G * H.

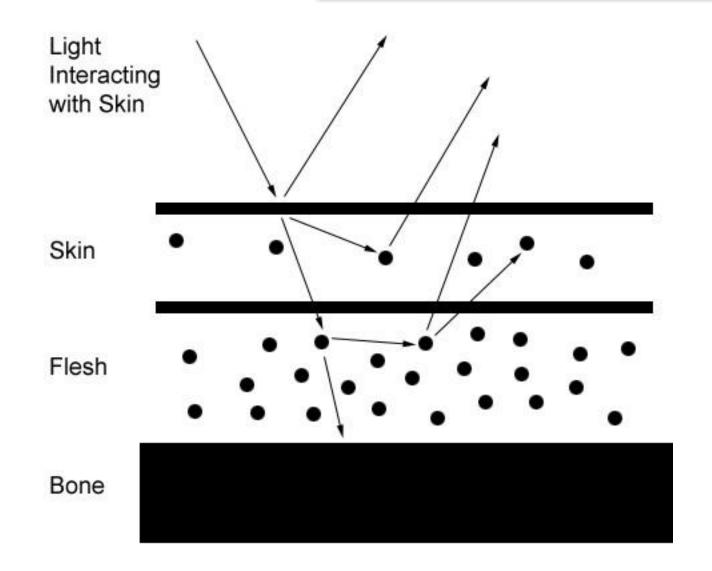
Anisotropic BRDF

- Anisotropic Shading
 - No Sysmatric Simplification
- Anisotropic Reflecting

Specular

- Integrating Over Milligeometry
- Approximate by Phong Specular term

BSSRDF


 The bidirectional surface scattering distribution function

BRDF

BSSRDF

BSSRDF

BSS.....SSSS....RDF

• What is the next step?

The End Thank you

Reference

- [1] Robin Green, "Spherical Harmonic Lighting: The Gritty Details"
- [2] Stephen H. Westin, James R. Arvo, Kenneth E. Torrance, "Predicting Reflectance Functions from Complex Surfaces"
- [3] <u>www.nvidia.com</u>
- [4] Szymon Rusinkiewicz, "A Survey of BRDF Representation for Computer Graphics"
- [5] NVIDIA Corporation, Chris Wynn, "An Introduction to BRDF-Based Lighting"
- [6] NVIDIA Corporation, Chris Real-Time BRDF-based Lighting using Cube-Maps Wynn, ""