CS 563 Advanced Topics In
Computer Graphics
Flexible PBR on Mobile Devices

by Suman Nadella

PBR

Overview

Sampling

Recursive Grids
Memory consumption
Rendering Algorithm
Flexible Rendering
Shadows

Results

Conclusion

= Point Based Rendering
= Separates Geometry
= Low memory Requirements

= QSplat
» Hierarchical bounding spheres
= LoD Control

= Surfels, surface splatting, network transmission
etc ...

Diverse Display Devices
= PDAS
= Mobile Phones

Limited Memory

Limited CPU

No Floating Point support
No Graphics Hardware
Small Display (240 x 320)

Complex Scenes
= 3D Scanning

Millions of Polygons ~ Few Thousand Pixels

Standard Rasterization on Polygon Geometry
= Waste!

Hierarchical Point Based representation

» Used already for Data Storage and Rendering
= More Flexible

= Locally Adaptive Progressive Rendering

= Explicit Storage of intermediate Attributes

Pfister et al Octree Representation of Surfels

Botsch et al — code point positions

= Split all marked cells to some level

* For each non leaf store 8 bit childhood code
= Empty cells are free

= Very efficient

Generalize Botsch approach
Extend by storing intermediate attribute samples

Combines
= Hierarchical rendering of QSplat
= Compactness of Botsch et al

1 Displaying models using our
point-based rendering scheme on a
200-MHz iPAQ. (a) Structure used
for hierarchical point-based render-
ing of a 4.7-Mbyte polygon model
at 2.1 frames per second (fps),
sampled at 1.3-Mbyte points. The
multilevel approach restricts the
number of points rendered depend-
ing on the view. (b) The dragon
model at 2.3 fps.

= Sampling Strategy

» For each cell, sample geometry at the point of
object closest to the center of the cell

If Object is not present, flag as empty
* Thus we can sample as long as ...

* IntersectAxisAlignedBox

= Returns true if object intersects or is contained in the
given axis aligned box

» GetSampleAt

» Returns a sample and its attributes for a given input
point (cell center) and geometry primitive.

Sample position is coded implicitly in the
hierarchy

Normal and Material Indices

16 bit code

= 13 bit quantized normal index
* Indexing 8 materials

More materials/colors — more bits
= 32 to 48 bits

Recursive Grid Structure
* Intermediate Sample Attributes
= Normal/Color for interior nodes

First used in Ray Tracing
Flexible and optimized traversal
? grids

= subcells are ?3

= ? subcells per dimension

Octree — simplest grid

m 7 =2 2X2X2
Each cell is subdivided into eight subcells
Tri-grid

= 7 =3, 3x3x3

Position of sample aligned with cell center

So need not be stored

Extend algorithm for Octree (Botsh) to ? grids
27 bits to encode position

Set the bit if sub-cell is non-empty

a be number of non-empty sub-cells per cell
a» be the average of a over all cells

Tri-grid with subdivision depth >=5
* a» approximates to 9
* Independent of model type

d =log a»/log ?
For a tri-grid, d measures to be 2
Intuitively, d is related to dimension of models

n = number of samples in the best model

= Same as number of leaf cells

Take both position and attributes into account

m = maximum depth of ? grid

Ni = number of cells at depth |

Nm = n and NI = a»> NI-1

Intermediate cells is sum over all levels except

last

Cost of structure by sample
Divide by n
Counting ?3 bits per cell

Size Increases with ?

Octree is optimal for storage
= If only position coding is considered

If sample attributes are also considered

Number of intermediate samples = number
of intermediate cells

Size in bits of a sample attribute — sigma
Memory cost, per leaf sample is

Total cost

g | p=2 | p=3 | p=d | g=17
0| 2.66 | 3.38 | 426 | 5.21

4 4 3.88 | 4.03 | 5.37
8 | 233 | 4.38 4.8 5.04
12 | 6.67 | 4.88 | 5.06 | 5.71

16 8 59.38 | 5.33 | 5.88
32 | 13.33 | 7.38 6.4 6.04
48 | 18.67 | 9.38 | 747 | 7.21

* Tri-grid has lowest consumption for 4-16 bits
= Higher bits — good for 4 or 5 grids

= Not efficient for rendering

Rendering needs a 4x4 multiplication
Projection to screen coordinates

~or each vertex of the model

Min — 16 multiplications and 12 additions
Polygons not suitable for mobile devices
Structured hierarchies

Generalized rendering of Octrees to ? grids

Given a ? grid, project the center

Standard projection in homogenous coords
Precompute displacement vector table

?3 vectors, corresponding to sub-cell centers
Linear projections

So, sub-cell projection computed from parent
center and displacement vector

Computed for each level and each
modification of viewing position

Center of a cell in ? grid takes three additions
from center of the parent cell

Final projection — dehomogenize

Two divisions

Displacement vector table d ijk Precomputed
Displacements giving first level from root —

ik = — BT —E€5 + —€}

i g ke [—et el

| €, €, €k

projected unit basis vectors

Subsequent levels
Incremental computation
One multiplication per vector

1
fn) _ * 3in—1)
di-.jluﬂc — E!:E'i.ljuk

For each sub-cell 1,J,k of a cell c, projected
center is computed with three additions

o el g gD

= Algorithm

Render (cell, center, level)
If cell is a leaf
for each subcell
If sampled
compute position
Draw Sample
else
for each subcell
If exists
compute subcenter
Render (subcell, subcenter, level+1)

Till now always render leafs

Waste if projected size of intermediate cells
IS less than a pixel

= When zooming out of the object
Can reconstruct attributes by averaging

More expensive than rendering itself
» Averaged Quantized normals (Botsch)

Method for rendering intermediate nodes

= Conservative approximation of cell projection
= Screen space bounding rectangle of the cell
= Displacement table

= Bounds (min,,miny,max,,maxy)

= min zzw — Mmin homogenous depth of the box

= For each level, If extent of box Is less than a
pixel, draw intermediate sample

= Splats to represent samples
= d, = (max,-min,) = extent in x , s Is splat size
= Two tests to determine which level to stop...

ﬁism;}ﬂ dz < w*s,w>0

u

Efficient frustum culling test using same info
Bounds of projected cell against screen bounds

If intermediate cell Is outside, ignore It and its
children

If not, precompute the extent S as

S = maz;,(mar — min)

avoiding all min-max computations

Efficient shadow map computation
Can use larger splats — less details needed

If standard algorithm,
* For each pixel, transform to light source space

= 3x3 matrix — 9 mul, 6 add, one shadow map test
= |IPAQ screen — 690,000 mul, 540,000 add

Avoid matrix multiplications , two passes
= Render to a depth map
= Render the scene

= Render to a depth map using projection
matrix of the light source and displacement
vectors

= Each sample in light space uses the
Incremental technique

= Avoids matrix computations to transform
points into light space

= Render scene computing positions for light
source proj matrix and camera proj matrix

= Perform depth map test for each sample

Single pass method for directional light sources

Given light direction, attribute strict order in
rendering of hierarchical structure

Ordering of sub-cells to render back to front

Precomputed once for the 27 cells for a given
Ight source position

Project subcell centers onto light source direction
_it samples are rendered first, and shadows later

Compute shadow map and view from camera and
perform depth test as we render

So avoiding first pass of earlier method

= tri-grid Is justified for our use

= Can be used In general for any ? grid

Model Points splats | shadows | One-Pass
Buddha (4) | 5.49 (4.15) | 3.47 2.65 2.99
Buddha (5) | 0.91 (0.63) | 3.33 2.46 2.85

Blade (4) | 4.71 (3.30) | 2.63 1.99 2.32
Blade (5) | 0.67 (0.47) | 2.40 1.89 221
Big Scene | 0.62 (0.30) | 2.38 1.83 2.11

number of cells and number of ops per cell
3 additions per subcell 3?4

Shift per subcell - ?3

Intermediate cells per sample — 1 / (?9-1)
Thus number of operations

341" 3
T — F‘d+ﬁ'
pr =1

Only basic rendering — point samples
No shadows, splats, frustum culling

P

2

3

1

basic (3)
shadows (6)

6.6
10.7

6.7
10.1

7.9

10.6

Tri-grid Is as efficient as Octree

Better than a 4,5 grid

So best bet when taking considering both

rendering and storage

Larger grids can cause jumps - switching levels

Precomputation of disp vectors - negligible

Shading is precomputed for each possible
normal direction

213 = 8k directions

Shading per material — table of evaluations of
material properties for each lighting angle

Simply use a lookup table

Precision of quantization values — level 5 for
16 bits color displays

level 3 4 5 §] 7
error (.017 0.004 0.001 26e-4 6.4e-5

Tri-grids computed on workstation
Transferred to IPAQ using a Flash Card
200 MHz processor

64 Mbytes main memory

8-9 Mbytes available for datastructure

16 bit attribute samples
= 13 bit normals
= 3 bit material index

= No Floating point support

= Division can be more expensive than lookup
* Implemented ...

* Fixed Point Arithmetic

= Approximation of inverse upto a given
precision using lookup table

= 32 bit fixed point numbers
= Shift on numbers rather than global lookup
= Based on expected precision

Samples a
Model | polygons 3 4 3] 3 4 D

Bunny 69 k 26k | 230k | 21 M | 9.36 | 9.03 | 9.00

Dragon 870 k 18k | 170k | 1.5M | 9.75 | 9.19 | 9.04
Buddha | 1.08M | 14k | 130k | 1.2M || 103 | 945 | 9.07
Blade 1.76 M || 17k | 180k | 1.7TM | 13.19 | 10.77 | 9.26

Arbre 540 k 40k | 370k | 32M || 1145 | 9.18 | 8.63
Saule 420 k 45k | 430k | 34 M | 13.62 | 9.62 | 7.84

Big Scene | 467M || 134k | 1.28M | 11.0 M - - -

Cubic nature of cells affect number of samples

Alpha value — well behaved models = 9

Other models, level 3 sampling is not fine enough

At level 5, the value stabilizes around 9

Tree models — edge effect due to leaves, doesn’t stay at 9

File Size
Model wrl.gz file 3 1 5]
Bunny 858 kb 76.8 kb || 698 kb | 6.28 Mb
Dragon 8.90 Mb || 54.5 kb || 506 kb | 4.60 Mb
Buddha 11.0 Mb || 41.5 kb || 396 kb | 3.65 Mb
Blade 14.4 Mb || 46.2 kb || 520 kb | 5.06 Mb
Arbre 8.53 Mb 114 kb || 1.1 Mb | 9.77 Mb
Saule 0.31 Mb 121 kb || 1.28Mb | 10.7 Mb
Big Scene | 52.14 Mb || 377 kb || 4.5 Mb | 40 Mb

= Core data structure increases by 25% - pointers
= 8Mbytes avalilable — can fit in all level 4 models
* |f not, a combination of 3,4,5

Figure 3: Above, a far view of the Buddha model shown (left) with points at level 4
(4.15 fps) (middle) with points at level 5 and (0.63 fps) (right) with splats at level 5 (2.85
fps). Below, a close view of the Buddha model shown (left) with points at level 4 (4.15
fps) (middle) with points at level 5 and (0.63 fps) (right) with splats at level 5 (1.42 fps).
Undersampling problems are evident at level 4 subdivision when using points only. At level
5, the increase in frame rate is notable.

0.55 fps 2.28 fps

Figure 6: Quality and speed of shadows. View of the Dragon model shown (left) with points
at level 5 with shadows and (right) multi-level display with one-pass shadows multi-level.
Notice that shadows generated with multi-level rendering are practically indistinguishable
from shadows generated with full point resolution.

Results Video

Florent Duguet George Drettakis, Flexible Point-Based
Rendering on Mobile Devices , INRIA tech report RR-4833
http://www-sop.inria.fr/reves/publications/data/2003/DD03/RR-4833. pdf
Florent Duguet George Drettakis, Flexible Point-Based
Rendering on Mobile Devices , IEEE Computer Graphics and
Applications number 4 volume 24 July-August 2004
http://csdl.computer.org/comp/mags/cg/2004/04/94057abs.htm

M. Botsch, A. Wiratanaya, and L. Kobbelt, Efficient High-Quality
Rendering of Point-Sampled Geometry,Rendering Techniques
2002, Eurographics

http://portal.acm.org/citation.cfm?id=581904

Pfister, et. al., Surfels: Surface Elements as Rendering
Primitives, Siggraph 2000
www.merl.com/people/pfister/pubs/sig2000.pdf

Florent Duguet Homepage
http://www-sop.inria.fr/reves/Florent.Duguet/

Questions/Comments/Suggestions

