
CS 563 Advanced Topics in
Computer Graphics

Flexible PBR on Mobile Devices

by Suman Nadella

Outline

§ PBR
§ Overview
§ Sampling
§ Recursive Grids
§ Memory consumption
§ Rendering Algorithm
§ Flexible Rendering
§ Shadows
§ Results
§ Conclusion

Already Discussed …

§ Point Based Rendering
§ Separates Geometry
§ Low memory Requirements

§ QSplat
§ Hierarchical bounding spheres
§ LoD Control

§ Surfels, surface splatting, network transmission
etc …

Overview

§ Diverse Display Devices
§ PDAs
§ Mobile Phones

§ Limited Memory
§ Limited CPU
§ No Floating Point support
§ No Graphics Hardware
§ Small Display (240 x 320)

Overview – Contd.

§ Complex Scenes
§ 3D Scanning

§ Millions of Polygons ~ Few Thousand Pixels
§ Standard Rasterization on Polygon Geometry
§ Waste!

§ Hierarchical Point Based representation
§ Used already for Data Storage and Rendering
§ More Flexible
§ Locally Adaptive Progressive Rendering
§ Explicit Storage of intermediate Attributes

Point Sampling

§ Pfister et al Octree Representation of Surfels
§ Botsch et al – code point positions
§ Split all marked cells to some level
§ For each non leaf store 8 bit childhood code
§ Empty cells are free
§ Very efficient

§ Generalize Botsch approach
§ Extend by storing intermediate attribute samples
§ Combines
§ Hierarchical rendering of QSplat
§ Compactness of Botsch et al

Screenshot

Framework

§ Sampling Strategy

§ For each cell, sample geometry at the point of
object closest to the center of the cell
§ If Object is not present, flag as empty
§ Thus we can sample as long as …
§ IntersectAxisAlignedBox
§ Returns true if object intersects or is contained in the

given axis aligned box

§ GetSampleAt
§ Returns a sample and its attributes for a given input

point (cell center) and geometry primitive.

Framework – Contd.

§ Sample position is coded implicitly in the
hierarchy
§ Normal and Material Indices
§ 16 bit code
§ 13 bit quantized normal index
§ Indexing 8 materials

§ More materials/colors – more bits
§ 32 to 48 bits

§ Recursive Grid Structure
§ Intermediate Sample Attributes
§ Normal/Color for interior nodes

Recursive Grids

§ First used in Ray Tracing
§ Flexible and optimized traversal
§ ? grids
§ subcells are ?3

§ ? subcells per dimension

§ Octree – simplest grid
§ ? = 2 , 2x2x2

§ Each cell is subdivided into eight subcells
§ Tri-grid
§ ? = 3 , 3x3x3

Recursive Grids – Contd.

§ Position of sample aligned with cell center
§ So need not be stored
§ Extend algorithm for Octree (Botsh) to ? grids
§ 27 bits to encode position
§ Set the bit if sub-cell is non-empty

Memory Consumption

§ a be number of non-empty sub-cells per cell
§ a? be the average of a over all cells
§ Tri-grid with subdivision depth >= 5
§ a? approximates to 9
§ Independent of model type

§ d = log a? / log ?
§ For a tri-grid, d measures to be 2
§ Intuitively, d is related to dimension of models

Illustration

Memory – Contd.

§ n = number of samples in the best model
§ Same as number of leaf cells

§ Take both position and attributes into account
§ m = maximum depth of ? grid
§ Ni = number of cells at depth I
§ Nm = n and Ni = a? Ni-1
§ Intermediate cells is sum over all levels except

last

Memory – Contd.

§ Cost of structure by sample
§ Divide by n
§ Counting ?3 bits per cell

§ Size increases with ?
§ Octree is optimal for storage
§ If only position coding is considered

Intermediate Samples

§ If sample attributes are also considered
§ Number of intermediate samples = number

of intermediate cells
§ Size in bits of a sample attribute – sigma
§ Memory cost, per leaf sample is

§ Total cost

Variations in Consumption

§ Tri-grid has lowest consumption for 4-16 bits

§ Higher bits – good for 4 or 5 grids

§ Not efficient for rendering

Rendering

§ Rendering needs a 4x4 multiplication
§ Projection to screen coordinates
§ For each vertex of the model
§ Min – 16 multiplications and 12 additions
§ Polygons not suitable for mobile devices
§ Structured hierarchies
§ Generalized rendering of Octrees to ? grids

Basic Algorithm

§ Given a ? grid, project the center
§ Standard projection in homogenous coords
§ Precompute displacement vector table
§ ?3 vectors, corresponding to sub-cell centers
§ Linear projections
§ So, sub-cell projection computed from parent

center and displacement vector
§ Computed for each level and each

modification of viewing position

Basic Algorithm – Contd.

§ Center of a cell in ? grid takes three additions
from center of the parent cell
§ Final projection – dehomogenize
§ Two divisions
§ Displacement vector table d i,j,k Precomputed
§ Displacements giving first level from root –

projected unit basis vectors

Basic Algorithm – Contd.

§ Subsequent levels
§ Incremental computation
§ One multiplication per vector

§ For each sub-cell i,j,k of a cell c, projected
center is computed with three additions

Recursive Rendering

§ Algorithm

Render (cell, center, level)
if cell is a leaf

for each subcell
if sampled

compute position
Draw Sample

else
for each subcell

if exists
compute subcenter
Render (subcell, subcenter, level+1)

Flexible Rendering

§ Till now always render leafs
§ Waste if projected size of intermediate cells

is less than a pixel
§ When zooming out of the object

§ Can reconstruct attributes by averaging
§ More expensive than rendering itself
§ Averaged Quantized normals (Botsch)

§ Method for rendering intermediate nodes

Flexible Rendering – Contd

§ Conservative approximation of cell projection
§ Screen space bounding rectangle of the cell
§ Displacement table
§ Bounds (minx,miny,maxx,maxy)
§ min z/w – min homogenous depth of the box
§ For each level, if extent of box is less than a

pixel, draw intermediate sample
§ Splats to represent samples
§ dx = (maxx-minx) = extent in x , s is splat size
§ Two tests to determine which level to stop…

Tests to check level

§ Efficient frustum culling test using same info

§ Bounds of projected cell against screen bounds

§ If intermediate cell is outside, ignore it and its
children

§ If not, precompute the extent S as

avoiding all min-max computations

Shadows

§ Efficient shadow map computation
§ Can use larger splats – less details needed
§ If standard algorithm,
§ For each pixel, transform to light source space
§ 3x3 matrix – 9 mul, 6 add, one shadow map test
§ iPAQ screen – 690,000 mul, 540,000 add

§ Avoid matrix multiplications , two passes
§ Render to a depth map
§ Render the scene

Shadows – Contd.

§ Render to a depth map using projection
matrix of the light source and displacement
vectors
§ Each sample in light space uses the

incremental technique
§ Avoids matrix computations to transform

points into light space
§ Render scene computing positions for light

source proj matrix and camera proj matrix
§ Perform depth map test for each sample

Shadows – Single Pass

§ Single pass method for directional light sources
§ Given light direction, attribute strict order in

rendering of hierarchical structure
§ Ordering of sub-cells to render back to front
§ Precomputed once for the 27 cells for a given

light source position
§ Project subcell centers onto light source direction
§ Lit samples are rendered first, and shadows later
§ Compute shadow map and view from camera and

perform depth test as we render
§ So avoiding first pass of earlier method

Shadows - Illustration

§ Can be used in general for any ? grid

§ tri-grid is justified for our use

Rendering Cost

§ number of cells and number of ops per cell
§ 3 additions per subcell 3?d

§ Shift per subcell - ?3

§ Intermediate cells per sample – 1 / (?d -1)
§ Thus number of operations

§ Only basic rendering – point samples
§ No shadows, splats, frustum culling

Comparison of Costs

§ Tri-grid is as efficient as Octree

§ Better than a 4,5 grid

§ So best bet when taking considering both
rendering and storage

§ Larger grids can cause jumps - switching levels

§ Precomputation of disp vectors - negligible

Pre-rendering materials

§ Shading is precomputed for each possible
normal direction
§ 213 = 8k directions
§ Shading per material – table of evaluations of

material properties for each lighting angle
§ Simply use a lookup table
§ Precision of quantization values – level 5 for

16 bits color displays

Results

Implementation

§ Tri-grids computed on workstation
§ Transferred to iPAQ using a Flash Card
§ 200 MHz processor
§ 64 Mbytes main memory
§ 8-9 Mbytes available for datastructure
§ 16 bit attribute samples
§ 13 bit normals
§ 3 bit material index

Implementation Issues

§ No Floating point support
§ Division can be more expensive than lookup
§ Implemented …
§ Fixed Point Arithmetic
§ Approximation of inverse upto a given

precision using lookup table
§ 32 bit fixed point numbers
§ Shift on numbers rather than global lookup
§ Based on expected precision

Statistics

§ Cubic nature of cells affect number of samples
§ Alpha value – well behaved models = 9
§ Other models, level 3 sampling is not fine enough
§ At level 5, the value stabilizes around 9
§ Tree models – edge effect due to leaves, doesn’t stay at 9

Statistics – Contd.

§ Core data structure increases by 25% - pointers
§ 8Mbytes available – can fit in all level 4 models
§ If not, a combination of 3,4,5

Results – Contd.

Results – Contd.

Video

Results Video

References

§ Florent Duguet George Drettakis, Flexible Point-Based
Rendering on Mobile Devices , INRIA tech report RR-4833
http://www-sop.inria.fr/reves/publications/data/2003/DD03/RR-4833.pdf

§ Florent Duguet George Drettakis, Flexible Point-Based
Rendering on Mobile Devices , IEEE Computer Graphics and
Applications number 4 volume 24 July-August 2004
http://csdl.computer.org/comp/mags/cg/2004/04/g4057abs.htm

§ M. Botsch, A. Wiratanaya, and L. Kobbelt, Efficient High-Quality
Rendering of Point-Sampled Geometry,Rendering Techniques
2002, Eurographics
http://portal.acm.org/citation.cfm?id=581904

§ Pfister, et. al., Surfels: Surface Elements as Rendering
Primitives, Siggraph 2000
www.merl.com/people/pfister/pubs/sig2000.pdf

§ Florent Duguet Homepage
http://www-sop.inria.fr/reves/Florent.Duguet/

Thank You

Questions/Comments/Suggestions

