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§ Volume scattering
§ Participating media
§ Its effect on light rays passing through it



Summary

§ Volume Scattering processes
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§ Volume Aggregates
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§ Homogeneous
§ Constant particle density
§ Uniform particle types 

distribution

§ Inhomogeneous
§ Varying particle density
§ Varying particle 

distribution



Volume Scattering Processes

§ Absorption
§ Light is absorbed by medium
§ Ray radiance decreases through the medium



Volume Scattering Processes

§ Absorption crossed section s a
§ Light absorption probability density per unit 

distance traveled in medium
§ Units ? m-1

§ dt ? through-medium-travel unit
§ Values may be larger than 1

§ Influence factors
§ Position (p)
§ Direction (? )
§ Spectrum 
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§ Difference between incoming and outgoing 
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Volume Scattering Processes

§ Change in radiance per unit
§ Difference between incoming and outgoing 

radiance

§ Negative fraction of Li
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Volume Scattering Processes

§ Absorbed radiance 
§ Traveled a distance d through medium
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Volume Scattering Processes
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§ Absorbed radiance 
§ Traveled a distance d through medium

§ Normal probability density function (Gaussian)
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Volume Scattering Processes

§ Emission
§ Light is emitted by the medium

§ Emitted radiance:
§ Independent of incoming light
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Volume Scattering Processes

§ Emission
§ Light is emitted by the medium

§ Emitted radiance:
§ Independent of incoming light

§ Change in radiance per unit
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Volume Scattering Processes

§ Out-scattering
§ Light is scattered out of the path of the ray
§ Probability density for scattering: s s

§ Reduction in radiance is given by
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Volume Scattering Processes

§ Total radiance reduction
§ Absorption
§ Scattering

§ Attenuation or extinction
§ Coefficient: s t

§ Change in radiance per unit
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Volume Scattering Processes

§ Beam transmittance Tr
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Volume Scattering Processes

§ Transmittance
§ Fraction of light that is transmitted between two 

points
§ Values between 0 and 1
§ Properties
§ Tr(p? p) = 1
§ In vacuum: Tr(p? p’) = 1, for all p’
§ Tr(p? p’’) = Tr(p? p’) Tr(p’? p’’)



Volume Scattering Processes
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§ Optical thickness

§ Homogeneous medium
§ s t is position independent
§ Transmittance reduced to Beer’s Law



Volume Scattering Processes

§ Beer’s Law
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In PBRT:

§ A = amount of light 
absorbed
§ = Absorption 

coefficient or molar 
absorptivity of medium
§ l = distance light travels 

through medium
§ c = Concentration or 

particle density



Volume Scattering Processes

§ In-scattering
§ Outside light scatters converging to ray path
§ Phase functions to represent scattered radiation in a 

point



Volume Scattering Processes

§ Phase function (PF)
§ Volumetric analog of BSDF 
§ Normalization constraints
§ PF defines a direction’s scattering probability distribution

§ Change in radiance per unit
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Volume Scattering Processes

§ S(p,w) includes volume emission

Emission In-scattering
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Volume Scattering Processes

§ S(p,w) includes volume emission

In-scattering
Probability Amount of added radiance

Emission In-scattering



( ) ( )

( ) ( ) ( ) ( ) ( )∫ ′′→′−+=

=

2
,,,,,

,
,

S isve

o

dLpLS

S
dt

dL

ωωωωωσωω

ω
ω

ppppp

p
p

Volume Scattering Processes

§ S(p,w) includes volume emission

Emission In-scattering

In-scattering
Probability Amount of added radiance

Phase function
(range: 0 ? 1) Incident radiance
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Volume Scattering Processes

§ S(p,w) includes volume emission

Emission In-scattering

In-scattering
Probability Amount of added radiance

Phase function
(range: 0 ? 1) Incident radiance

(x,y)
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Volume Scattering Processes

§ S(p,w) includes volume emission

Emission In-scattering

In-scattering
Probability Amount of added radiance

Phase function
(range: 0 ? 1) Incident radiance

(x,y)
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Volume Scattering Processes

§ S(p,w) includes volume emission

Emission In-scattering

In-scattering
Probability Amount of added radiance

Phase function
(range: 0 ? 1) Incident radiance
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Volume Scattering Processes

§ S(p,w) includes volume emission

Emission In-scattering

In-scattering
Probability Amount of added radiance

Phase function
(range: 0 ? 1) Incident radiance
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Phase Functions

§ Isotropic
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Phase Functions

§ Isotropic
§ Basic PFs
§ PFs is constant
§ Since 
§ Area of sphere = 4?*r2
§ pfS are normalized (r =1)
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Phase Functions

§ Rayleigh
§ Very small particles
§ Acurately describes light scattering when
§ Particle radii < light wavelength

§ Good for atmospheric simulation



Phase Functions

§ Mie
§ Based on Maxwell’s equations
§ Broader range of particle sizes
§ Good for fog and water droplets simulation



Phase Functions

§ Henyey and Greenstein
§ Easy to fit
§ Single control parameter
§ Controls relative proportion of forward backward 

scattering
§ g ∈ (-1, 1)
§ g < 0: back scattering
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Phase Functions

§ Increase complexity by combination
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Phase Functions

§ Increase complexity by combination

§ More efficient version
§ Avoids 3/2 power computation
§ k ~ 1.55g - 0.55g 3
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Volume Interface and 
Homogeneous Media

§ VolumeRegion class
§ Volume Scattering Interface in PBRT
§ General methods
§ BBox
§ IntersectP

§ Scattering information methods
§ Sigma_a (absorption)
§ Sigma_s (scattering)
§ Lve (emission)
§ P (phase value)
§ Sigma_t (attenuation)
§ Tau (optical thickness)



Volume Interface and 
Homogeneous Media

§ Homogeneous volumes
§ Uniform particle density
§ One type of particle

§ HomogeneousVolume : VolumeRegion
§ s s And s a are constant



Varying-Density Volumes

Homogeneous volume pariticpating medium



Varying-Density Volumes

§ Inhomogeneous volumes
§ Still one type of particle
§ Spatially variable density
§ Scales scattering properties according to density, 

except for Tau

§ DensityRegion : VoumeRegion
§ Method for obtaining density added
§ Tau not implemented
§ Dependent on shape and density distribution function



Varying-Density Volumes

§ 3D Grids
§ VolumeGrid : DensityRegion
§ Density values defined in a 3D matrix
§ Intermediary values are interpolated
§ Manhatan distance
§ p1 (x1, y1) and p2 (x2, y2) 

Manhatan distance is |x1 - x2| + |y1 - y2|. 

§ Trilinear interpolation

§ Used in smoke pictures



Varying-Density Volumes

§ Exponential Density Volume
§ ExponentialDensity : Density Region
§ Density varies with height 

§ Good for modelling Earth’s atmosphere
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Varying-Density Volumes

Exponential density volume pariticpating medium



Volume Aggregates

§ AggregateVolume
§ Many Volume Regions

§ Advantages
§ Simplifies scene
§ Easy integration with 3D structures

§ Parameters creation
§ Sum of individual volumes` parameters
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