
CS 563 Advanced Topics in 
Computer Graphics

Materials

by Paulo Gonçalves de Barros



Summary

§ Basic concepts
§ BSDF
§ Material interface and implementations
§ Bump mapping



§ Scene structure

Basic concepts

Scene

Primitives

Shape Material



§ Calculating hits

Basic concepts

Scene

Primitives

Shape Material

Intersection



§ Obtaining ray colors

Basic concepts

Scene

Primitives

Shape Material

Shading



§ Obtaining ray colors

Basic concepts



§ Obtaining ray colors

Basic concepts

<Compute emitted and reflected light at ray intersection point>
<Evaluate BSDF at hit point>

1- BSDF

Whitted’s



§ Obtaining ray colors

Basic concepts

<Compute emitted and reflected light at ray intersection point>
<Evaluate BSDF at hit point>
<Initialize common variables for Whitted integrator>
<Compute emitted light if ray hit an area light source>

1- BSDF

2 – area light?

Whitted’s



§ Obtaining ray colors

Basic concepts

<Compute emitted and reflected light at ray intersection point>
<Evaluate BSDF at hit point>
<Initialize common variables for Whitted integrator>
<Compute emitted light if ray hit an area light source>
<Add contribution of each light source>

1- BSDF

3 – light 
contrib.

2 – area light?

Whitted’s



§ Obtaining ray colors

Basic concepts

<Compute emitted and reflected light at ray intersection point>
<Evaluate BSDF at hit point>
<Initialize common variables for Whitted integrator>
<Compute emitted light if ray hit an area light source>
<Add contribution of each light source>
if (rayDepth++ < maxDepth) {

<Trace rays for specular reflection and refraction>
}
--rayDepth;

1- BSDF

BSDF

BSDF

3 – light 
contrib.

4 – reflection and 
refraction

2 – area light?

Whitted’s



§ Obtaining ray colors

Basic concepts

Scene

Primitives

Shape Material

Shading

BSDF

BRDFBTDFBTDFBRDF...

Texture



BSDF

§ Parameters
§ DifferentialGeometry – shading dg
§ Geometric normal - nG

§ Index of refraction

§ Builds orthonormal coordinate system
§ Shading normal nS

nS
nG



BSDF

§ Fixed maximum number of BxDFs
§ 8
§ Never needed more than that.

§ Methods
§ Number of BxDFs Components
§ Normal equality
§ Coord. frames transformations



BSDF

§ Problems with shading normals



BSDF

§ Problems with shading normals

§ Light leak nGnS

? I



BSDF

§ Problems with shading normals

§ Light leak

§ Black spots

nGnS

? I

nGnS

? I



BSDF

§ Solution
§ BRDF or BTDF?
§ Use geometric normal;

nGnS

? I? O

nGnS

? I

? O

Evaluate BRDFs Evaluate BTDFs



BSDF

§ Solution
§ BRDF or BTDF?
§ Use geometric normal;

§ Scattering equation evaluation
§ Use shading normal

nGnS

? I? O

nGnS

? I

? O

Evaluate BRDFs Evaluate BTDFs



BSDF

§ Solution

nGnS

? I

nGnS

? I

§ Light leaks avoided
§ Only BTDFs are 

considered

§ Black spots avoided
§ Only BRDFs are 

considered



BSDF

§ Memmory management
§ Many BSDFs created during single ray cast
§ Performance issues with dynamic allocation



BSDF

§ Memmory management
§ Many BSDFs created during single ray cast
§ Performance issues with dynamic allocation

§ How to avoid this?



BSDF

§ Memmory management
§ Many BSDFs created during single ray cast
§ Performance issues with dynamic allocation

§ How to avoid this?
§ Previous memory allocation



BSDF

§ Memmory management
§ Many BSDFs created during single ray cast
§ Performance issues with dynamic allocation

§ How to avoid this?
§ Previous memory allocation

§ For every single ray hit?



BSDF

§ Memmory management
§ Many BSDFs created during single ray cast
§ Performance issues with dynamic allocation

§ How to avoid this?
§ Previous memory allocation

§ For every single ray hit?
§ Reuse memory



BSDF

§ Memory Arena
§ Static chunk of memory
§ All BxDFs for a ray are sequentialy saved there
§ Used and recycled at every ray tracing

Memory

BSDF BTDF BSDF BRDF

Class BSDF {
static Memory Arena

.

.

.

}

.



Materials

§ GetBSDF method
§ Parameters
§ dgGeom – actual Differential Geometry
§ dgShading – perturbed shading geometry

§ Returns final shading geometry for point
§ BRDF
§ BTDF



Materials

§ Create access to BSDF in 
Intersection class
§ Intersection:: GetBSDF
§ dg.ComputeDifferentials (ray)
§ Primitive->getBSDF
§ Material->getBSDF



Materials

§ Matte
§ Purely diffuse surface
§ Parameters
§ Spectral diffuse reflection – Kd
§ Scalar roughness value – sigma
§ Optional scalar texture – bumpMap



Materials

§ Sigma variation example

Sigma = 0 ? Lambertian BRDF



Materials

§ Sigma variation example

Sigma = 1 ? OrenNayar BRDF



Materials

§ Matte getBSDF method
BSDF *Matte::GetBSDF(const DifferentialGeometry &dgGeom,

const DifferentialGeometry &dgShading) const {
// Allocate _BSDF_, possibly doing bump-mapping with _bumpMap_
DifferentialGeometry dgs;

return bsdf;
}



Materials

§ Matte getBSDF method
BSDF *Matte::GetBSDF(const DifferentialGeometry &dgGeom,

const DifferentialGeometry &dgShading) const {
// Allocate _BSDF_, possibly doing bump-mapping with _bumpMap_
DifferentialGeometry dgs;

if (bumpMap)
Bump(bumpMap, dgGeom, dgShading, &dgs);

else
dgs = dgShading;

return bsdf;
}

Calculates shading normal 
based on bump map



Materials

§ Matte getBSDF method
BSDF *Matte::GetBSDF(const DifferentialGeometry &dgGeom,

const DifferentialGeometry &dgShading) const {
// Allocate _BSDF_, possibly doing bump-mapping with _bumpMap_
DifferentialGeometry dgs;

if (bumpMap)
Bump(bumpMap, dgGeom, dgShading, &dgs);

else
dgs = dgShading;

BSDF *bsdf = BSDF_ALLOC(BSDF)(dgs, dgGeom.nn);

return bsdf;
}

Calculates shading normal 
based on bump map

Allocates the BSDF



Materials

§ Matte getBSDF method
BSDF *Matte::GetBSDF(const DifferentialGeometry &dgGeom,

const DifferentialGeometry &dgShading) const {
// Allocate _BSDF_, possibly doing bump-mapping with _bumpMap_
DifferentialGeometry dgs;

if (bumpMap)
Bump(bumpMap, dgGeom, dgShading, &dgs);

else
dgs = dgShading;

BSDF *bsdf = BSDF_ALLOC(BSDF)(dgs, dgGeom.nn);

Spectrum r = Kd->Evaluate(dgs).Clamp();

return bsdf;
}

Calculates shading normal 
based on bump map

Allocates the BSDF

Texture evaluation; Obtention of 
reflection and roughness coefficients.



Materials

§ Matte getBSDF method
BSDF *Matte::GetBSDF(const DifferentialGeometry &dgGeom,

const DifferentialGeometry &dgShading) const {
// Allocate _BSDF_, possibly doing bump-mapping with _bumpMap_
DifferentialGeometry dgs;

if (bumpMap)
Bump(bumpMap, dgGeom, dgShading, &dgs);

else
dgs = dgShading;

BSDF *bsdf = BSDF_ALLOC(BSDF)(dgs, dgGeom.nn);

Spectrum r = Kd->Evaluate(dgs).Clamp();

float sig = Clamp(sigma->Evaluate(dgs), 0.f, 90.f);
if (sig == 0.)

bsdf->Add(BSDF_ALLOC(Lambertian)(r));
else

bsdf->Add(BSDF_ALLOC(OrenNayar)(r, sig));

return bsdf;
}

Calculates shading normal 
based on bump map

Allocates the BSDF

Texture evaluation; Obtention of 
reflection and roughness coefficients.

Allocates new BRDF 
according to sigma and
Adds it to final BSDF



Materials

§ Plastic
§ Mixture of diffuse and glossy surface
§ Parameters
§ Spectral diffuse reflection – Kd
§ Glossy specular reflection – Ks
§ Scalar roughness value – roughness
§ Size of specular highlight

§ Optional scalar texture – bumpMap



Materials

§ Plastic getBSDF method
BSDF *Plastic::GetBSDF(const DifferentialGeometry &dgGeom,

const DifferentialGeometry &dgShading) const {
DifferentialGeometry dgs;
if (bumpMap)

Bump(bumpMap, dgGeom, dgShading, &dgs);
else

dgs = dgShading;

BSDF *bsdf = BSDF_ALLOC(BSDF)(dgs, dgGeom.nn);

Spectrum kd = Kd->Evaluate(dgs).Clamp();
BxDF *diff = BSDF_ALLOC(Lambertian)(kd);
Fresnel *fresnel =
BSDF_ALLOC(FresnelDielectric)(1.5f, 1.f);
bsdf->Add(diff);

Spectrum ks = Ks->Evaluate(dgs).Clamp();
float rough = roughness->Evaluate(dgs);
BxDF *spec = BSDF_ALLOC(Microfacet)(ks, fresnel,
BSDF_ALLOC(Blinn)(1.f / rough));
bsdf->Add(spec);

return bsdf;
}

Calculates shading normal 
based on bump map

Allocates the BSDF

Texture reflection evaluation;

Allocates glossy BRDF 
according to sigma and
Adds it to final BSDF

Allocates reflection BRDF 
according to sigma and
Adds it to final BSDF

Texture glossy evaluation;



Materials

Plastic



Materials

§ Other materials
§ Translucent
§ Mirror
§ Glass
§ ShinyMetal
§ Substrate
§ Clay
§ Felt
§ Primer
§ Skin
§ BluePaint
§ Uber



Materials

Blue paint



Materials

Substrate



Materials

Clay



Materials

Glass



Bump Mapping

§ Displacement simulation to points

d(p)

p

n(p)

p’

),(),(),(),(' vunvudvupvup +=



Bump Mapping

§ Displacement simulation to points

d(p)

p

n(p)

p’

),(),(),(),(' vunvudvupvup +=



Bump Mapping

§ Displacement simulation to points

d(p)

p

n(p)

p’

),(),(),(),(' vunvudvupvup +=



Bump Mapping

§ Change the partial derivatives of p to change 
normal for p’

§ Derivation using the product and chain rules

Chain rule
§h(t) = f (g(t)). 

§dh(t) = df (g(t))dg(t).

Product rule
§ D[u*v] = u*D[v] +v*D[u]

v
p

u
p

n
∂
∂

×
∂
∂

=

),(),(),(),(' vunvudvupvup +=

u
n

dn
u
d

u
p

u
p

∂
∂

+
∂
∂

+
∂
∂

=
∂
∂ '



Bump Mapping

§ By the definition of partial derivative 

§ For small ? u, we have that
u

vudvuud
u

vud
u ∆

−∆+
=

∂
∂

→∆
),(),(

lim
),(

0

u
n

dn
u

vudvuud
u
p

u
p

∂
∂

+
∆

−∆+
+

∂
∂

=
∂
∂ ),(),('



Bump Mapping

§ By the definition of partial derivative 

§ For small ? u, we have that
u

vudvuud
u

vud
u ∆

−∆+
=

∂
∂

→∆
),(),(

lim
),(

0

u
n

dn
u

vudvuud
u
p

u
p

∂
∂

+
∆

−∆+
+

∂
∂

=
∂
∂ ),(),('

v
n

dn
v

vudvvud
v
p

v
p

∂
∂

+
∆

−∆+
+

∂
∂

=
∂
∂ ),(),('



Bump Mapping

§ Effect



Bump Mapping

§ Effect

Bum Map

with

without



Bump Mapping

§ Effect
§ http://en.wikipedia.org/wiki/Bump_mapping

+ =



Bump Mapping

§ Advantages
§ Nice depth effects 
§ Easy to implement
§ Reasonably fast performance

§ Disadvantages
§ No real p’ is created
§ Does not affect objects surface
§ Does not affect shadow casting process
§ Does not affect objects edges visualization



Bump Mapping

§ Effect
§ http://www.sanedraw.com/LEARN/OVERVIEW/OV

150MAC/INDEX.HTM

Displacement 
mapping

Bump
mapping



Bump Mapping

§ Effect
§ http://www.sanedraw.com/LEARN/OVERVIEW/OV

150MAC/INDEX.HTM

Displacement 
mapping

Bump
mapping



Bump Mapping

§ Effect
§ http://www.sanedraw.com/LEARN/OVERVIEW/OV

150MAC/INDEX.HTM

Displacement 
mapping

Bump
mapping



CS 563 Advanced Topics in 
Computer Graphics

Materials
by Paulo Gonçalves de Barros


