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Abstract. As traditional visual-examination-based methods provide neither reliable nor consistent wound
assessment, several computer-based approaches for quantitative wound image analysis have been proposed
in recent years. However, these methods require either some level of human interaction for proper image
processing or that images be captured under controlled conditions. However, to become a practical tool of
diabetic patients for wound management, the wound image algorithm needs to be able to correctly locate and
detect the wound boundary of images acquired under less-constrained conditions, where the illumination and
camera angle can vary within reasonable bounds. We present a wound boundary determination method that is
robust to lighting and camera orientation perturbations by applying the associative hierarchical random field
(AHRF) framework, which is an improved conditional random field (CRF) model originally applied to natural
image multiscale analysis. To validate the robustness of the AHRF framework for wound boundary recognition
tasks, we have tested the method on two image datasets: (1) foot and leg ulcer images (for the patients we have
tracked for 2 years) that were captured under one of the two conditions, such that 70% of the entire dataset are
captured with image capture box to ensure consistent lighting and range and the remaining 30% of the images
are captured by a handheld camera under varied conditions of lighting, incident angle, and range and (2) mou-
lage wound images that were captured under similarly varied conditions. Compared to other CRF-based
machine learning strategies, our new method provides a determination accuracy with the best global perfor-
mance rates (specificity: >95% and sensitivity: >77%. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI:
10.1117/1.JMI.6.2.024002]
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1 Introduction
Traditional wound assessment methods, based on visual exami-
nation and manual measurement, risk inconsistency and may not
facilitate easy assessment of healing trends. In addition, frequent
visits to the wound clinic are often found retrospectively to be
unnecessary and represent a financial burden for the patients, as
well as an avoidable workload for clinicians. Hence, in recent
years, there has been a research focus on developing computer-
based methods to achieve more consistent, objective, and clin-
ically meaningful wound image analysis methods. Although
many numerical indicators can be applied to describe the wound
healing status (such as the geometrical measures of the wound
dimension and the composition ratio for different tissues), it is
still the clinical opinion that the size of the wound area is the
most significant measure that provides the foundation for all
other wound analysis work, including tissue classification and
healing rate evaluation. Thus, this paper mainly focuses on
applying computer vision techniques to determine the boundary
of wound areas.

Initially, computer-based approaches for locating a wound in
an image and detecting the wound boundary have been based
on nonmachine learning-based methods, such as active con-
tour models, level set-based methods, and synthetic image

segmentation strategies.1–3 However, these methods suffer from
performance limitations when dealing with wound images with
complicated skin textures and boundaries. Hence, most wound
analysis research works in recent years have concentrated on
machine learning-based computer vision approaches.

The bottom–up-based object recognition scheme has been
widely used in recent years for wound boundary determination
research.4–6 This approach has a common set of processing
steps: image segmentation; segment-based feature extraction;
and classifier training by applying specific machine learning
methods, such as support vector machine (SVM) or artificial
neural network (ANN).1,4,7,8 To improve the accuracy of wound
boundary detection, more sophisticated techniques have been
investigated. For example, a cascaded classifier based on ANN
and Bayesian committee machine was proposed in Ref. 4 to
classify different types of wound tissue. In previous work by
the authors,9 a two-stage cascaded SVM-based classifier was
evaluated to determine the wound area. The SVM classifier
achieved fairly accurate performance (sensitivity = 73.3% and
specificity = 94.6%), provided that the wound images were
captured under carefully controlled lighting and camera range,
but the system did allow a significant amount of surrounding
healthy skin to appear in the image which was good progress.
The controlled capture conditions were achieved by using an
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image capture box.9 In contrast, in other SVM-based studies,8,10

the tested images consisted mainly of the wound areas, sur-
rounded by only a small amount of healthy skin tissue.

Figure 1(a)–1(c) show original images captured without the
aid of the image capture box, specifically images of the same
moulage wound (synthetic wound) under different illumination
levels and ranges. The wound areas identified by our cascaded
SVM classifier are marked in red in Figs. 1(d)–1(f). The wound
boundary is here defined as the outer edge of the pale yellow
gel border, indicating a correct result in Fig. 1(d). We can see
clearly the erroneous boundary detection on the second and
third images. We can observe that the cascaded SVM classifier
method totally missed the target when the wound was further
away and the background information is complicated. Hence,
a more robust method is needed if we wish to broaden the utility
of the wound recognition algorithm by relaxing the image cap-
ture constraints, i.e., image capture without the use of the image
capture box.

One possible solution to overcome the deficiencies of bot-
tom–up-based methods is offered by a discriminative machine
learning model11 called the conditional random field (CRF),
which directly models the conditional probability of different
class labels (such as wound and nonwound), given a set of
images. Mathematically, the CRF model directly models the
posterior distribution (the distribution of the labels, conditional
on the observed image data) as a Gibbs distribution.12 This

conditional probability model depends on arbitrary noninde-
pendent characteristics of the observations, in contrast to the
Markov random field model, whose generative nature obliges
us to model the joint distribution of the image data and the
corresponding label field, and which therefore requires strict in-
dependent assumptions to make the model inference tractable.
In addition, the CRF-based approach does not model the distri-
bution for observed image data itself, as it is not utilized when
performing classification. For these reasons, there has been
increasing interests in recent years in solving image-labeling
problems using the CRF model.13–17 More important, the fac-
torization graph-based definition allows the CRF model to in-
corporate features in different scales and from arbitrary regions
of the image.13,17 This characteristic provides increased flexibil-
ity to meet different needs from various object recognition tasks,
especially for tasks requiring scale-invariant robustness.

This paper proposes a wound detection system to determine
the boundaries of foot ulcers. For the wound area determination,
we apply the associative hierarchical random field (AHRF)
framework, which was proposed in Ref. 16. This model can
be viewed as an extension of the CRF-based approach, which
augments the robust PN model (the most widely used CRF
model in the computer vision area) by incorporating segment
(also referred as superpixels)-based features as higher-order
potential terms into the energy formulation. There are several
reasons as to why we have chosen to utilize this AHRF

Fig. 1 An example of recognition failure by the SVM-based approach on moulage wound images of
different scales (ranges) and illumination levels: (a)–(c) original wound images of the same moulage
wound, (d)–(f) wound boundary determination results.
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framework: (1) it provides a unification of the “top-down” and
“bottom-up” approaches; (2) it allows the use of image features
defined at any scale and over any arbitrary neighborhood
regions, and (3) it can be solved efficiently using graph-
cut-based move-making algorithms.15,18 The wound boundary
determination is completely automatic, i.e., requiring no human
intervention, and can handle the recognition and wound boun-
dary detection of wound images captured under different ranges
and lighting conditions, which is a significant improvement
from our previous work (our IEEE paper not issued yet). To
evaluate the performance of this new wound recognition system,
we use two different wound image datasets. The first image
dataset is composed of images of moulage wounds placed on
an artificial foot. The second dataset consists of images of real
diabetic foot ulcers from recruited subjects at the Wound Clinic
in UMass Medical School, Massachusetts. Images from both
datasets had been captured at different ranges, illumination
level, and viewpoints in order to better evaluate the robustness
of the system.

The paper is organized as follows: Sec. 2 provides an over-
view of the foot ulcer image analysis system. Section 3 introdu-
ces basic formulation of the AHRF model. In Sec. 4, we describe
in detail how this AHRF framework is applied to accomplish our
foot ulcer boundary determination task; the experimental results
will be presented in Sec. 5. Finally, Sec. 6 gives an overall con-
clusion and assessment of the proposed system.

2 Methodology Overview
We introduce the basic structure for our wound area determina-
tion approach based on the AHRF model. The entire algorithmic
process is illustrated in Fig. 2. It can be seen from this figure that
the complete system is divided into two subsystems: model
training and wound recognition.

The wound classifier training process is shown in the left col-
umn of Fig. 2. The AHRF model is composed of several types
of potential terms at different levels of image granularity:
pixel-wise, pairwise, and superpixel-based terms (the pairwise
terms are used to describe the relationship between two adjacent
pixels). Hence, we first need to perform superpixel segmentation
on the original images. Many different segmentation algorithms
have been applied in the object recognition area.5,8,19–21 In our
system, we adopt the parallel version of the mean shift algo-
rithm,20,22 due to its good boundary adherence and efficient
implementation.

The goal for our wound recognition system is to be able to
accurately determine the wound boundary in images acquired
under image acquisition conditions where illumination, range,
and viewing angles can vary over reasonable ranges; images
may also contain other background objects in the vicinity of the
wound boundary. Therefore, we apply the texton map-based fea-
tures, which have previously been shown to provide promising
performance in object classification tasks in natural scene
images.23 These features are all required to be extracted densely
(at each pixel location) and incorporated into the unary potential
term in the AHRF model using the joint boost method.24 For
the pairwise potential terms, we apply the classical contrast-
sensitive Potts potential form.25 Next, the superpixel-based
unary potential is also computed using a multiclass joint boost
approach over the normalized histograms of multiple pixel-wise
features. Finally, the pairwise potential terms are calculated at
the superpixel level. More details about the feature extraction
will be presented in Sec. 4.

For evaluating the ability of the CRF methods to recognize
a wound and determine its boundary on a given set of images,
the superpixel segmentation and feature extraction are the same
as is used in the training process. We apply the learned textons
to generate the texton map for each feature channels. Afterward,
we evaluate the unary potential, pairwise potential, and seg-
ment-based potentials (if applicable) based on the model learned
in the training process. Then we apply the CRF inference
method to find the optimal labeling over the entire wound
image.

3 Basic Knowledge of Associative
Hierarchical Random Field Model

3.1 Conditional Random Field Basics

Consider an ordered set of variable X ¼ ½X1; X2; : : : Xn�, where
each variable Xi will be annotated by a label from a set L cor-
responding to the object classes. We write y ∈ Ln for a labeling
of X, where yi refers to the labeling of the variable Xi. The ran-
dom variables X and y are jointly distributed, but in the discrimi-
native framework we construct a probabilistic model PðyjXÞ to
be estimated fromM paired training instances fXðiÞ; yðiÞgMi¼1 and
thus do not need to model the marginal pðXÞ. The neighborhood
system N is defined by sets Ni, ∀ i ∈ V, where Ni denotes the
set of all neighbors of the variable Xi. A clique c is a set of
random variables Xc, which is conditionally dependent on each
other.15 Any possible assignment of labels to the random vari-
ables will be called a labeling (denoted by y), which take its
possible values from Ln. The labeling on the clique c is referred
to as yc. We use V ¼ f1;2; : : : ; ng to refer to the set of valid
vertices (or indices) of X. The posterior distribution PðyjXÞ
over the labeling of the CRF is a Gibbs distribution12 and can
be written as

EQ-TARGET;temp:intralink-;e001;326;384PðyjXÞ ¼ 1

Z
exp

�
−
X
c∈C

φcðycÞ
�
; (1)

where Z is a normalizing constant called the partition function,
and C is the set of all cliques. The term φcðycÞ is known as the
potential function of the clique c ⊂ V, where yc ¼ fyi∶i ∈ cg.
The corresponding Gibbs energy is given as

EQ-TARGET;temp:intralink-;e002;326;293EðyÞ ¼ − log½PðyjXÞ� − log Z ¼
X
c∈C

φcðycÞ: (2)

Finding the most probable labeling is equivalent to solving the
maximum a posteriori (MAP) problem. This optimal labeling y�
of the CRF is defined as

EQ-TARGET;temp:intralink-;e003;326;217y� ¼ arg maxy∈LPðyjXÞ ¼ arg miny∈LEðyÞ: (3)

According to Refs. 13, 14, and 26, labeling problems in com-
puter vision area are typically formulated as a pairwise CRF
whose energy can be written as the sum of unary and pairwise
potentials16

EQ-TARGET;temp:intralink-;e004;326;141EðyÞ ¼
X
i∈V

φiðyi; θuÞ þ
X

i∈V;j∈Ni

φP
ijðyi; yj; θpÞ; (4)

where Ni is the set of neighbors of vertex i. The unary potential
φiðyi; θuÞ is computed independently for each pixel by a clas-
sifier that produces a distribution over the label assignment yi
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given image features (the features can be the pixel value or other
features calculated over the neighborhood region). The pairwise
potential φP

ijðyi; yj; θpÞ is computed between each pair of adja-
cent pixels in the image domain and is formulated to penalize the
adjacent pixels being assigned different labels. Here, θu and θp
are sets of parameters for the unary potential and pairwise poten-
tial, respectively. The details of the parameter estimation, also
referred as the model learning, will be discussed in Sec. 4.
The actual formulations to calculate the unary and pairwise

potentials are task-independent. This flexibility allows us to
incorporate different factors (color, edge, texture, or spatial posi-
tion) into the CRF energy formulations.13,17

3.2 Associative Hierarchical Random Field Model

To include longer distance relationships within the image,
higher-order potentials defined on superpixels or between pairs
of superpixels are incorporated into the basic CRF models to

Fig. 2 Basic structure for wound recognition classifier based on AHRF model.
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better describe the hierarchical connectivity. This method gives
us an integration of the “top-down” and “bottom-up” ap-
proaches that are commonly used to overcome many problems
in computer vision. To achieve top–down—bottom–up integra-
tion, an improved model, called the AHRF had been proposed in
Ref. 16. Of practical importance is the fact that it has been
shown that this model can be solved efficiently using graph-
cut-based move-making algorithms mentioned earlier. It has
also been proven that a new model generated by summing
up two AHRFs is also an AHRF. This fact enables different
potentials based on different features to be incorporated within
the CRF model, while the model inference is still practical, per-
mitting an efficient solution for the AHRF model. Here, we will
introduce the AHRF model in details.

The AHRF model is defined in Eq. (5) by incorporating
higher-order potentials defined on superpixels, in addition to the
labeling, as formulated in Eq. (4). This extension was proven to
be valid as pixels in the same superpixel have a high probability
of being assigned to the same label. The energy of the higher-
order random field is of the form that can be given as

EQ-TARGET;temp:intralink-;e005;63;532EðxÞ ¼
X
i∈V

φiðxiÞ þ
X

i∈V;j∈Ni

φP
ijðxi; xjÞ þ

X
c∈S

φh
cðxcÞ; (5)

where S is a set of segments (or superpixels), given by one
or more superpixel segmentation algorithms,20,27 and φh

cðxcÞ are
the higher-order potentials defined over the cliques. The higher-
order potentials can be described as a robust PN model as

EQ-TARGET;temp:intralink-;e006;63;445φh
cðxcÞ ¼ min

l∈L

�
γmax
c ; γlc þ

X
i∈c

wiklcΔðxi ≠ lÞ
�
; (6)

where wi is the weight of the variable xi, and γ satisfies
γlc ≤ γmax

c , ∀ l ∈ L. The potential has a cost of γlc if all pixels
in the segment are assigned with label l. The pixels that are not
assigned with the same label are penalized with a cost, which is
expressed as wiklc, and the maximum cost of the potential is
truncated to γmax

c . This framework supports the integration of
higher-order potentials, based on superpixels at multiple scales
of the image grid.

It has been proven in Ref. 16 that the higher-order PN of
Eq. (6) is equivalent to the cost of minimal labeling of a set
of pairwise potentials defined over the same clique variables
xc and a single auxiliary variable xð1Þc that takes the values from
an extended label set LE ¼ L ∪ fLFg. Here, LF is a free label,
meaning that there is no dominant label in this clique. Such a
segment is said to be unassigned. Finally, we can formulate the
framework to incorporate the pairwise dependencies between
auxiliary variables as

EQ-TARGET;temp:intralink-;e007;63;211EðxÞ ¼
X
i∈V

φiðxiÞ þ
X

i∈V;j∈Ni

φP
ijðxi; xjÞ

þmin
xð1Þ

�X
c∈S

φc½xc; xð1Þc � þ
X
c;d∈S

φP
cd½xð1Þc ; xð1Þd �

�
: (7)

These pairwise terms, defined over a higher-order clique grid,
impose consistency between adjacent cliques. Then, the model
in Eq. (7) can be generalized to a hierarchical framework, in
which the relationship between layers takes the form as

EQ-TARGET;temp:intralink-;e008;326;752φc½xc; xð1Þc � ¼ ϕc½xð1Þc � þ
X
i∈c

ϕc½xi; xð1Þc �: (8)

The weights for each node in the higher layer in ϕcð:Þ are pro-
portional to the sum of the weights in the “base layer” belonging
to the clique c. More generally speaking, the energy of the new
hierarchical model is formulated as

EQ-TARGET;temp:intralink-;e009;326;675EðxÞ¼
X
i∈V

φiðxiÞþ
X

i∈V;j∈Ni

φP
ijðxi;xjÞþ

X
xð1Þ

Eð1Þ½x;xð1Þ�; (9)

where the third term in this energy expression is recursively
defined in Eq. (10).

EQ-TARGET;temp:intralink-;e010;326;609EðnÞ½xðn−1Þ; xðnÞ� ¼
X
c∈S

φP
c ½xðn−1Þ; xðnÞc � þ

X
c;d∈S

φP
cd½xðnÞc ; xðnÞd �

þ min
xðnþ1Þ

Eðnþ1Þ½xðnÞ; xðnþ1Þ�:
(10)

In Eq. (10), xð0Þ ¼ x represents the state of the base level, and
xðnÞ where n ≥ 1 describes the state of auxiliary variables. The
interlayer relationship between two layers of auxiliary variables
can be described using a weighted robust PN potential with the
unary term φc½xðnÞc � and pairwise term as

EQ-TARGET;temp:intralink-;e011;326;473φcðxn−1d ; xðnÞc Þ ¼
�
0 if xðnÞc ¼ LF ∪ xðnÞc ¼ xðn−1Þd

wdkx
ðnÞ
c otherwise

;

(11)

where the weights are summed up over the base layer as wd ¼P
j∈dwj. As formulated in Eq. (11), xðnÞc is encouraged to take

the label LF if either most of its directly connected nodes from
the lower layer [we can refer to these nodes as the children of

xðnÞc ] are assigned with label LF or these children are assigned
with different labels.

4 Application of Associative Hierarchical
Random Field Framework to Wound Area
Determination Task

Several tasks are required to utilize the AHRF-based framework
for computer vision tasks: (1) extracting suitable dense features,
(2) incorporating these features into different potential terms,
(3) learning the optimal parameters for each term on training
image set, and (4) evaluating the trained model on new test data
by applying appropriate inference algorithms.

Based on the definition of the AHRF framework described
above, a set of potentials used in the object-class segmentation
problem has also been presented in Ref. 17. This set consists of
unary potentials defined on both pixels and superpixels, pair-
wise potentials between pixels and between superpixels, and
connective potentials between different layers in the hierarchical
graph structure. According to Refs. 16 and 17, there are two
different ways to incorporate these features into the CRF model.

In the first method, we can further decompose the unary
potential term into a weighted summation φðxÞ ¼ P

cλcξcðxcÞ,
where ξcðxÞ is a feature-based potential and λc is its weight. We
need to utilize the joint boost approach for training each feature-
based potential, then estimate the weights using local search
scheme on a validation set. This training method turns out to
be robust, but computationally demanding as well.
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The second method for training a single unary potential term
is implemented by combining multiple dense extracted features
together. After extracting each feature over the image grid, we
perform texton generation. The textons can be defined as the
fundamental microstructure elements for the visual perception
of texture patterns in images. These basic structures contain
more meaningful information than do individual pixels. Textons
have been widely used in computer vision for a wide range of
tasks, including image analysis, object recognition, and text
recognition.17,23,28 The standard texton generation process usu-
ally consists of two steps: (1) filtering and (2) clustering (more
details about the texton generation can be found in Ref. 17). As a
result of the texton generation process, we have NM texton
channels in total, where N is the number of types of features
in total andM is the cluster center number for texton generation.
Before performing the texture-layout filtering, we calculate the
integral image (used for efficiently calculating the sum of pixel
values in a rectangular region)29 for each channel. Then, we
extract the texture layout-based features, based on these NM
texton channels. Finally, we perform the joint-boost approach
to determine the final unary term only for one time. Weighing
the strengths and weaknesses of the first and the second method,
we chose to apply the second method.

According to Ref. 16, the potentials are defined over a three-
tier hierarchy which is organized based on the types of nodes. A
three-tier hierarchy provides adequate accuracy, and increasing
the number of hierarchical levels beyond three tiers has been
shown not to improve the accuracy noticeably. The nodes of
each tier are pixels, segments, and supersegments, respectively.
In our previous work (our IEEE paper, not issued yet), we had
evaluated the different superpixel segmentation algorithms in
the scenario of wound recognition quantitatively. As suggested
in Ref. 9, the mean shift algorithm is applied to perform the
superpixel segmentation. The reason for choosing mean shift
algorithm is that the spatial and range resolution parameters20

allow us to adjust the segmentation scales easily. In this case,
we can utilize finer scale segmentation for the second-tier seg-
ments and supersegments for the third tier with coarser scale
segmentation.

4.1 Features

In related works,16,17 several different types of descriptors are
used and evaluated for wounds, including textons-based shape
filters, local binary patterns,30 multiscale dense scale invariant
feature transformation (SIFT),19 opponent SIFT,31 color distri-
bution features, and histogram of oriented gradients.32 The
textons used here are defined as clustered 17-dimensional
responses to 17 different filters (Gaussian, Gaussian derivative,
and Laplacian filters at different scales). The local binary pattern
is an eight-dimensional binary feature, in which each element
represents a comparison of the pixel value of the center pixel
with its eight neighbors. The SIFT feature contains the histo-
gram of gradients of 4 × 4 cells quantized into eight bins. In this
case, there will be eight-element features for each cell, with one
element per bin. Hence, we need 128 (eight elements for each
of the 16 cells) elements in total. The resulting 128-dimensional
vector is normalized to the range from 0 to 1. Opponent SIFT is
another version of the traditional SIFT and is based on the histo-
grams of gradients for three channels in the chosen color space.
Similar to the work in Ref. 16, we have generated a dictionary
that contains 400 words for each type of descriptor, using the
K-mean clustering method, followed by quantizing the local

distribution of the descriptors for each type based on its own
dictionary. Hence, for each local patch (16 × 16 in our case),
the final features will be represented by a 400-element vector
that describes the distribution, a 400-bin histogram where each
bin represents one word in the dictionary.

4.2 Unary Potentials from Pixel-Wise Features

Unary potentials from pixel-wise features are derived from
TextonBoost,17 which has allowed us to perform texture-based
segmentation, at the pixel level, within the same framework. The
features used for constructing these potentials are computed on
every pixel of the image, and are, therefore, also called dense
features. TextonBoost estimates the probability of a pixel taking
on a certain label by boosting weak classifiers based on a set of
texture layout responses. We have observed that textons are
unable to discriminate between object classes of similar textures
(e.g., between the wound tissue inside the wound boundary and
the skin tissue adjacent to the wound). This has motivated us to
extend the TextonBoost framework by boosting the classifiers
defined on multiple dense features (such as color, textons, histo-
grams of oriented gradients, and pixel location). The results in
Ref. 16 show that the boosting of multiple features together
results in a significant improvement in the accuracy of scene
classification (note that the improvement from 72% in Ref. 17
to 82% in Ref. 16 has been achieved based on the same image
dataset). The potentials are incorporated into the framework in
the standard way as a negative log-likelihood as

EQ-TARGET;temp:intralink-;e012;326;447φðxi ¼ lÞ ¼ − log
eHlðiÞP

l 0∈L
eHlðiÞ ¼ −HlðiÞ þ Ki; (12)

where HlðiÞ is the AdaBoost classifier response for a label l and
a pixel i and Ki ¼ log

P
l 0∈L e

HlðiÞ is a normalizing constant.

4.3 Histogram-Based Unary Potentials for
Superpixels

Unary potentials are also defined over segments and superseg-
ments. For many object recognition problems, the distributions
of pixel-wise feature responses have been found to be more dis-
criminative than any feature alone.16 In other words, applying
a statistical form of pixel-wise features, such as the histogram,
over a neighborhood region will be more powerful for visual
discrimination than using these individual features directly.
The unary potentials of the auxiliary segment variables are esti-
mated using multiclass JointBoost33 over the normalized histo-
grams of multiple clustered pixel-wise features. The learning
process is the same as for the pixel-wise unary potential intro-
duced earlier. The unary potential defined on superpixels is
incorporated into the energy as
EQ-TARGET;temp:intralink-;e013;326;187

φcðxð1Þ ¼ lÞ ¼ λsjcjmin½−HlðcÞ þ Kc; αh�
φcðxð1Þ ¼ LFÞ ¼ λsjcjαh; (13)

where HlðcÞ is the response given by the AdaBoost classifier to
clique c taking on label l, αh is a truncation threshold, and Ki ¼
log

P
l 0∈L e

Hl 0 ðcÞ is a normalizing constant.16 In our case, the
cost of pixel labels is different from that of the associated seg-
ment labels and is set to klc ¼ ½φcðxð1Þ ¼ LFÞ−φcðxð1Þ ¼ lÞ�∕
0.1jcj. It can be seen that at most 10% of the pixels are allowed
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to take a label that is different from the segment label without
changing the state of the segment to LF.

4.4 Histogram-Based Pairwise Potentials between
Superpixels

The pairwise terms on the pixel level φP
ijð:Þ take the form of

the classical contrast-sensitive Potts potentials as

EQ-TARGET;temp:intralink-;e014;63;667ξPðxi; xjÞ ¼
�
0 if xi ¼ xj
gði; jÞ otherwise

: (14)

In Eq. (14), the function gði; jÞ describes the edge informa-
tion based on the pixel value difference between neighboring
pixels13 as

EQ-TARGET;temp:intralink-;e015;326;752gði; jÞ ¼ θp þ θv expð−θβkIi − IjkÞ; (15)

where Ii and Ij are the color vectors of pixel i and j, respec-
tively. This pairwise constraint encourages neighboring pixels
in the image (having a similar color) to have the same label.
More details can be found in Ref. 13.

We use the pairwise potential in the segment level defined in
Eq. (16). This potential forces the superpixels with the same tex-
ture and color features to be assigned the same label. The term

gðc; dÞ is defined as gðc; dÞ ¼ minðjcj; jdjÞjh½xð1Þc � − h½xð1Þd �j22,
where hð:Þ is the normalized histogram for color values of a
given segment,16 and where the operator j:j22 represents the
Euclidean distance of histograms between two given neighbor-
ing segments, indexed as c and d

EQ-TARGET;temp:intralink-;e016;63;581ξPcd½xð1Þc ; xð1Þd � ¼ g

8<
:

0 if xð1Þc ¼ xð1Þd

gðc; dÞ∕2 if ½xð1Þc ¼ LF & xð1Þd ≠ LF� ∪ ½xð1Þc ≠ LF & xð1Þd ¼ LF�
gðc; dÞ otherwise

: (16)

4.5 Model Inference

As stated in Ref. 18, a CRF framework will not be useful with-
out an efficient method for optimization. In the object recogni-
tion scenario, this optimization task is defined as finding the
optimal label that can minimize the energy function defined
in Eq. (7). In the artificial intelligence area, we also refer to the
optimization of the CRF framework as inference. In Ref. 16, the
suitability of various inference algorithms for AHRF has been
analyzed. It is claimed that graph-cut-based move-making algo-
rithms (such as alpha-expansion and alpha-beta swap methods)
are the most suitable algorithms for solving the inference prob-
lem of minimizing the pairwise energy function defined over
densely connected networks, which are commonly used in the
computer vision field.

The move-making algorithms usually first assign an arbitrary
initial solution (in our case, one solution is a label vector for all
pixels in the image) where the goal is to find the optimal solution
that minimizes the energy function defined in Eq. (7). Hence, a
sequence of changes will be made to the initial solution toward
the direction for energy minimization. According to Ref. 13,
only the alpha-beta swap method can be directly applied to the
AHRF framework. Other move-making algorithms require that
the interlayer costs either form a metric18 or are truncated con-
vex. This property requires that the pairwise potential terms con-
sists of two parts: (1) the “convex” part, which encourages the
smoothness and (2) the “truncated” part, which ensures that the
edge information will be preserved with respect to some order-
ing of the labels.18 Thus, we decided to use the alpha-beta swap
algorithm for the inference of the AHRF framework for wound
boundary determination. The general idea of the alpha-beta
swap algorithm is presented below. More details can be found
in Ref. 18.

After the initial solution was randomly determined, we chose
two labels (label alpha and label beta) from the label set. In our
case, the wound recognition task was a binary labeling problem
so there were only two labels: wound or nonwound. We can call
either one the alpha label or the other one the beta label. Then we
applied a max-flow-based algorithm34 to find the optimal swap
of alpha-beta label pairs for all pixels by treating this subtask as

a s − t min-cut problem,18 which was the basic binary form of
a min-cut problem in graph theory, to find the optimal binary
classification over a connected two-dimensional grid. This pro-
cedure was run until the approximate global optimal swap was
identified.

5 Experimental Results

5.1 Experimental Setup

To evaluate the performance of the AHRF-based wound recog-
nition system, we utilized two different wound image datasets.
The first image dataset was composed of images of moulage
wounds placed on an artificial foot. The second dataset con-
sisted of images of actual diabetic foot ulcers from recruited sub-
jects at the Wound Clinic in UMass Medical School. To better
evaluate our system, the wounds in images of the first dataset
were captured at different ranges, illumination levels, and view-
ing angles. Specifically, we collected 162 images of six moulage
wounds for the first dataset. Twenty-seven images for each
wound were captured, at three different ranges, three different
viewing angles, and three different illumination conditions.
In the second training dataset, 100 images were captured from
15 subjects where most of them were acquired using an image
capture box, as described in our previous work.9

To evaluate the performance of thewound recognition over the
entire dataset, we divided both datasets equally into 10 folders.
Then a 10-folder validation method was carried out as follows.
We performed the “train and test” operation for 10 rounds. In each
round, we trained the model on nine folders and tested the model
on the remaining folder. The average specificity and sensitivity
were evaluated by combining the test results from 10 rounds.
For the moulage image dataset, we first manually segmented the
image into four different labels: (1) the wound, (2) gel which is
the transparent material that surrounds themoulagewound, (3) the
healthy skin, and (4) the background, as shown in Figs. 3(a) and
3(c). For all the images in the real-wound image dataset, we will
segment each image into three different labels, which are identical
to three of the moulage wound labels; eliminated is the surround-
ing gel label, as shown in Figs. 3(b) and 3(d).
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To evaluate the performance of the AHRF-based wound area
determination approach more completely, we have also com-
pared it to the performance obtained with two other CRF-based
strategies introduced in Ref. 17. The first strategy (referred to as
CRF model 1), which is described in Ref. 17, is based on an
ordinary pairwise CRF model. The pixel-wise unary term and
pairwise term are designed in the same way as the AHRF model.
However, there are no potential terms based on superpixels.
For the second reference strategy (referred as CRF model 2),
we applied the fully connected CRF model introduced in
Ref. 14. Compared to the other two models, the most distin-
guishing characteristic of the AHRF model, i.e., our model,
is that each pair of pixels in the image is connected by an edge,
which is further associated with the pairwise potential. We
applied these models one by one independently to the same two
datasets in the above-mentioned 10-folder validation approach.

The two most important parameters are the cluster center N
for the texton generation and the boosting iteration number M
for joint boost training scheme. To achieve better parameter esti-
mation, we performed a grid search method to select the best
parameter pair (N;M). We performed the AHRF model on the
moulage image dataset using the above-described 10-folder val-
idation method. The Matthews correlation coefficient (MCC)35

results (the values of MCC score ranges from −1 to 1, where the
higher the value, the better is the classification results) are shown
in Table 1, whereas the wound recognition computation time
evaluation results are shown in Table 2. The algorithm is imple-
mented on the following PC: Intel quad-core CPU, 4GB RAM.
We did not evaluate the training efficiency evaluation as the
model training is assumed to be performed offline. In our current

PC-based environment, the training might consume >2 h if we
set the iteration number as 5000.

Based on the results shown in Tables 1 and 2, the MCC gives
the best performance when N ¼ 600 and M ¼ 5000; moreover,
we can see that the MCC value increases as we increase the
boosting iteration number (M), but obviously there is a corre-
sponding increase in the computational time. On the other hand,
when the cluster center number N becomes >400, there is no
obvious improvement in the MCC result. In contrast, increasing
the cluster center will substantially increase the computation
burden for the model training. In conclusion, we set N ¼ 400
and M ¼ 3000 empirically for the best trade-off between accu-
racy and speed.

5.2 Wound Area Determination Results

Sample wound recognition results are shown in Figs. 4 and 5 for
datasets 1 and 2, respectively. The specificity and sensitivity
evaluation results for the three CRF models on the two datasets
are given in Tables 3 and 4. Finally, the computational times for
wound recognition are presented in Table 5. We can see that
model 1 did not recognize the wound very well in a multiscale
scenario, as it is a pairwise model in which the pairwise potential
terms have only been evaluated on pairs of pixels in the same
clique. Model 2 outperformed model 1 on wound recognition
accuracy as it generated the pairwise potentials on each pair
of pixels in the image. In this case, the long-range connections
are incorporated into the CRF formulation. The AHRF model
provides even better wound recognition performance than

Fig. 3 Single sample of original image and ground truth from two dataset: (a) original image of the data-
set 1, (b) original image of the dataset 2, (c) ground truth labeling of dataset 1 (green for background,
yellow for healthy skin, blue for artificial gel, and red for wound), and (d) ground truth labeling of dataset 2
(the same labeling color fashion as for dataset 1 except for the absence of artificial gel category).

Table 1 MCC results using different (N;M) parameter settings.

N ¼ 100 N ¼ 200 N ¼ 300 N ¼ 400 N ¼ 500 N ¼ 600

M ¼ 1000 0.393 0.438 0.471 0.523 0.532 0.538

M ¼ 2000 0.469 0.498 0.547 0.596 0.602 0.606

M ¼ 3000 0.550 0.582 0.617 0.648 0.651 0.655

M ¼ 4000 0.598 0.632 0.668 0.699 0.694 0.703

M ¼ 5000 0.707 0.738 0.769 0.813 0.816 0.821

Table 2 Wound recognition time using different (N;M) parameter
settings (unit: seconds).

N ¼ 100 N ¼ 200 N ¼ 300 N ¼ 400 N ¼ 500 N ¼ 600

M ¼ 1000 10.2 10.3 10.8 11.0 11.2 11.3

M ¼ 2000 18.1 18.5 19.9 20.2 22.0 22.4

M ¼ 3000 27.7 28.2 30.0 30.9 31.3 33.0

M ¼ 4000 38.8 39.9 41.3 41.5 42.9 42.9

M ¼ 5000 46.3 47.2 49.3 50.1 50.5 51.2
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model 2, especially when dealing with images of the same
wound captured from different ranges (scales), viewing angles,
and illumination conditions, due to its hierarchical structure
involving superpixel-based higher-order potential terms. As
mentioned earlier,16 the potentials defined over a three-tier hier-
archy provide the best trade-off between the time performance
and recognition performance, although the hierarchy can be
extended indefinitely. It is also found that the wound boundary
recognition accuracy reaches a plateau when the number of hier-
archy level is increased beyond three. However, the AHRF
model requires longer computing times than those of the other
two models due to the superpixel segmentation required and the
increased number of potential terms to be evaluated, as can be
observed from the computation times given in Table 5.

6 Discussion and Conclusion
An automatic wound boundary determination system for foot
ulcer images has been presented in this paper. We tracked 15
patients in the Wound Clinic at UMASS over a 2-year period
resulting in 100 high-resolution foot ulcer images. To better

evaluate the robustness of our system, we also designed another
dataset with images of moulage wounds, captured at different
ranges, illumination levels, and viewing angles. We utilized the
AHRF framework as the wound recognition model in our sys-
tem. Higher-order potentials defined on superpixels or between
pair of superpixels were incorporated into the basic CRF models
to better describe the connectivity using a hierarchical structure.
Therefore, the proposed wound boundary determination method
is expected to be more robust when the wound image capture
range, illumination, and angles are variable. To apply AHRF
framework, we first performed superpixel segmentation using
the mean shift algorithm. Second, we generated texton maps
densely (for each pixel position) for several well-known fea-
tures, and third, we incorporated these feature maps into both
the pixel-wise and segment-wise unary potential terms using the
joint boost method (the parameters for each term were learned
at the same time). For the pairwise potential term, we applied
the classical contrast-sensitive Potts form. Finally, the optimal
label inference was performed by applying the alpha-beta swap
method.

Fig. 4 Samples of wound recognition results on dataset 1. (a) The original images; images 1 to 3 and 4 to
6 represent the two different wound simulations in different scales and viewpoints, respectively. (b)–(d)
Wound recognition results provided by CRF models 1 and 2 and AHF model; the wound areas are
labeled with red color.
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To evaluate the AHRF-based binary wound classification
system, we compared its performance to the performance of two
other CRF-based classification strategies, which also have been
widely used in object recognition research. Based on the exper-
imental results, we found that the AHRF framework provided

the best wound recognition accuracy, especially in dealing with
images of the same wound captured at different ranges (scales),
viewing angles, and illumination conditions, due to its hierarchi-
cal structure involving superpixel-based higher-order potential
terms. However, the performance enhancement required more
parameters to be estimated for more potential terms. As a result,
the wound recognition time for this model was longer than for
the other two CRF strategies.

The results indicate that chronic wounds can be correctly
located in an image, and the wound boundary determined, with-
out requiring tightly controlled range and lighting conditions.
This implies that wound images can be captured and correctly
processed in the lighting conditions likely to be encountered in
a clinic, which broadens its clinical utility significantly.

There are a number of directions for future research work.
First, to further improve the robustness of the wound boundary
determination, we need to expand the diversity of the real wound
images in the database, in terms of wound type, shape, color
composition, surrounding tissues, skin color, and texture. To
convert pixel-based area measures to actual units (e.g., square
millimeter), image calibration should be done first to determine
the range ratio (e.g., square millimeter per pixel). Another
potential direction might be to improve the efficiency of the
CRF-based approach. The results presented in our paper show
that the computational time of the proposed approach is nearly
60 s even when implemented on powerful PCs. Owing to the
iterative nature, the potential evaluation step is the computation-
ally most expensive part. As described in Sec. 5, the iteration
number has to be >3000 to acquire near-optimal results. Hence,
the best option to reduce the computational burden may be to re-
move the extraction of less effective features (feature selection),
which may require more detailed evaluation of the effective-
ness of features. Last, although this paper compares AHRF with
two other CRF models, we have not carried out a similar com-
parison to deep learning methods, such as convolutional neural

Table 3 Wound recognition specificity using different CRFmodels on
our two datasets.

CRF model 1 CRF model 2 AHRF model

Dataset 1 0.927 0.984 0.992

Dataset 2 0.898 0.911 0.955

Table 4 Wound recognition sensitivity using different CRFmodels on
our two datasets.

CRF model 1 CRF model 2 AHRF model

Dataset 1 0.674 0.767 0.844

Dataset 2 0.618 0.703 0.769

Fig. 5 Samples of wound recognition results on dataset 2. (a) The original images; images 1 to 6 repre-
sent three different wounds imaged in different scales, viewpoints, and illumination, respectively. (b)–(d)
Wound recognition results provided by CRF models 1 to 3; the wound areas are labeled with red color.

Table 5 Wound recognition computation time using different CRF
models on our two datasets (unit: seconds).

CRF model 1 CRF model 2 AHRF model

Dataset 1 36.7 30.9 57.4

Dataset 2 37.4 35.9 60.3
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networks. However, based on what is required to obtain a good
performance with machine learning, we can make some general
observations: (i) when working with a small number of wound
images, AHRF is likely to outperform deep learning, but as the
number of wound images increases, the AHRF performance is
likely to plateau; (ii) as deep learning in principle has many
more trainable parameters as compared to AHRF, deep learning
is likely to outperform AHRF when a large number of wound
images is available.
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