
Design of a Machine Learning System for Prediction of 

Chronic Wound Management Decisions 

Abstract. Chronic wounds affect 6.5 million Americans, are complex conditions 

to manage and cost $28-$32 billion annually. Although digital solutions exist for 

non-expert clinicians to accurately segment tissues, analyze affected tissues or 

efficiently document their wound assessment results, there exists a lack of 

decision support for non-expert clinicians who usually provide most wound 

assessments and care decisions at the point of care (POC). We designed a 

machine learning (ML) system that can accurately predict wound care decisions 

based on labeled wound image data. The care decisions we predict are based on 

guidelines for standard wound care and are labeled as: continue the treatment, 

request a change in treatment, or refer patient to a specialist. In this paper, we 

demonstrate how our final ML solution using XGboost (XGB) algorithm 

achieved on average an overall performance of F-1 =.782 using labels given by 

an expert and a novice decision maker. The key contribution of our research lies 

in the ability of the ML artifact to use only those wound features (predictors) that 

require less expertise for novice users when examining wounds to make standard 

of care decisions (predictions). 

Keywords: Point-of-care decision, Machine learning, design science, chronic 

wounds, non-expert clinicians 

1 Introduction 

Chronic wounds (also known as chronic ulcers) affect 6.5 million Americans [1], are 

complex conditions to manage [2], and cost $28-$32 billion annually [3]. Yet, the 

majority of patients with chronic wounds do not have access to evidence-based wound 

care services or certified wound clinicians [4]. As a result most wound assessments and 

care decisions are provided by non-expert clinicians (with no wound specialization 

training) who have limited chronic wound treatment expertise [5]. This lack of expertise 

results in uncertainty during wound care decision-making causing inaccurate 

treatments. If inaccurately diagnosed or inappropriately treated [6], wound healing may 

be delayed resulting in amputations [7], limited quality of life and even death [8]. Thus, 

patients must receive appropriate wound care to maintain normal healing process [9]. 

Although narrative wound care guidelines exist to support these clinicians [10-12], non-

adherence to these guidelines is reported recurrently [13]. There is the burden of finding 

the right procedure for the right patients on the user of these guidelines. This burden 

becomes even heavier with having to cope with narrative descriptions that may not 

align with their current expertise and knowledge. However, there exist opportunities 

for using ML to support POC wound care decisions which is the focus of current paper.  

In this paper we demonstrate the design and development of a ML solution that is 

envisioned for a smartphone clinical decision support system (CDSS) app. The 
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envisioned CDSS app will take advantage of this ML solution that can predict decisions 

only by taking raw wound images using phone camera. These decisions are 

generalizable to contexts where both experts and novices make wound care decisions.  

2 Background: Challenges and opportunities for chronic 

wound management 

2.1 Accurate diagnosis and treatment 

Chronic wounds are characterized as diabetic foot ulcers (DFUs), pressure ulcers (PUs), 

venous ulcers (VUs), and arterial ulcers (AUs) and surgical wounds. Each wound type 

has different assessment and management procedures. Despite the abundance of 

published chronic wound management studies (e.g., clinical trials and decision 

guidelines) on how to treat these wounds, non-expert clinicians delivering wound care 

still have major clinical uncertainties as to which decision to make when it comes to a 

particular wound [14]. This often leads to undesirable wound care outcomes [15], 

patients being harmed [16] and waste of healthcare resources [17]. Hence research is 

required to develop alternative decision support tools, such as digital wound care 

support using ML solutions, that enhance wound healing [18] and reduce costs [19]. 

2.2 Consistent and collaborative decision-making 

Wound care is known to lack standardization within and across institutions and among 

specialists [20]. Although models of collaborative reorganization and integrated care 

have been proposed [20], there still is a great need for more highly trained providers in 

the wound care community (registered and visiting nurses, wound practitioners and 

experts, vascular, podiatric and plastic surgeons). In the wound care community non-

expert clinicians deliver most of the wound care, e.g. changing wound dressings and 

collecting wound measurements. Their assessment often requires judgment and 

decision-making in complex, challenging and uncertain circumstances [21]. Such a 

complexity in a dynamic wound care context [22] creates uncertainty for these non-

expert clinician decision makers [23]. Uncertainty can also derive from lack of relevant 

wound care knowledge and expertise [22]. To help non-expert clinicians there should 

be alternative solutions such as digital support tools that simulate standard wound care 

guidelines for more consistent decision-making [24]. 

Non-expert clinicians may draw on their intuition to guide their judgments and 

decision-making by association with experience and expertise [22] which then increase 

their uncertainty. Hence, the digital support tool must use a generalizable solution based 

on standard wound care that is applicable to contexts where both expert and non-expert 

clinicians treat patients. Avoidance of inconsistent decision making across the wound 

care community will promote high-quality wound care and protect chronic wound 

patients.  
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2.3 ML practices for chronic wound management 

Several ML studies have attempted to provide digital chronic wound care support for 

non-expert clinicians. For example, one study [25] proposed a telemedicine tissue 

segmentation (granulation, necrotic, slough) using linear discriminant analysis (LDA) 

to assist the clinicians to make better chronic wounds diagnostic decisions. Their model 

was trained on 60 digital images and used wound tissues in color images of both 

pressure and diabetic ulcers. When evaluated on ground truth images labeled by 

experts, the model could classify the tissue types with overall accuracy of 91.45 %. 

Another study [26] used information collected during routine care in outpatient wound 

care centers and developed a digital predictive ML model for delayed wound healing. 

A total of 180,696 patient wounds were collected at 68 outpatient centers. The data 

from first and second wound assessments was used to construct predictors of delayed 

wound healing. The model achieved an area under the curve (AUC) of 0.842 for the 

delayed healing outcome. For wound assessment and efficient documentation, we 

found one recent study [27] that developed a smart-glass based POC solution using 

DSR methodology. Although their study demonstrated through user experiment a 

unique approach for efficient wound documentation, it did not utilize ML prediction to 

support non-expert decision making. 

2.4 Uniqueness of the current study 

Our study aims to design a ML solution artifact that can predict wound care decisions 

based on labeled wound image data. We use visual and descriptive features from the 

image as predictors and care decisions as target labels. The decisions we predict are 

based on standard wound care guidelines and are labeled as: continue with the current 

treatment (D1), request non-urgent change in treatment from a wound specialist (D2), 

or refer patient to a wound specialist (D3). Our ML solution artifact is unique in several 

ways: (a) It predicts care decisions for all main types of chronic wounds (DFUs, Pus, 

VUs, AUs and surgical), (b) It is trained and tested on a diverse collection of labeled 

image datasets (local hospital collection and publicly available web collection), (c) It 

has a knowledge base of predictors that are extracted from a collection of wound care 

guidelines, and (c) It uses a decision pathway that mitigates inconsistent decision labels 

for the training image datasets that lack information about current treatments for each 

image.  

2.5 Use scenario addressed by the artifact 

The design process is inspired by the scenario where a wound non-expert clinician, 

who treats patients for various conditions within a clinical or non-clinical setting, 

encounters a patient with a lower extremity (LE) chronic wound. If this is a new 

undocumented LE chronic wound with no current treatment plan, this non-expert 

clinician will refer the patient to a wound specialist for initial treatments and timely 

plan of care (2-week/4-week follow-ups). Due to the patient’s immobility, 

transportation time and costs, and lack of access to wound care clinics, regularly 
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visiting a wound expert clinic becomes challenging. As a result, these patients will 

continue receiving their routine wound care (according to their current treatment 

prescribed by the wound specialist) through local non-expert clinicians. This routine 

wound care includes dressing changes, contacting the expert for type of dressing and 

replacement products (if any changes), reassessing and documenting the wound 

measurements (depths, height and width), controlling infections using antibiotics and 

providing non-sharp debridement. 

The non-expert clinician must be able to identify healing wounds from those that 

require non-urgent change of current treatment and most importantly wounds that must 

be urgently referred to the wound specialist for surgical closure, debridement or 

surgical referral. The quality of these decisions will determine the progress of patient’s 

wound and wound care outcomes. To address this use scenario, we ask the following 

design questions: How can we design a ML system artifact that can accurately predict 

standard of care decisions for LE chronic wounds? Can this ML system artifact 

produce consistent decisions using labels given by expert and novice decision makers? 

3 Research methodology and design process 

When adherence to clinical guidelines is ignored, the treatment procedures clinicians 

(wound experts and non-experts) follow may differ considerably. This results in 

inconsistent decision-making across the chronic wound care community (i.e., some 

clinicians may be aggressive about debriding the wound, while others may be less 

concerned about regular debridement). A ML system that can provide generalizable 

decisions that follow the standard of care can address this issue. To do so, we defined 

the following design requirements (DR) for our ML artifact that predicts sensitive 

chronic wound management decisions: DR (1): The knowledge base for ML system 

artifact to predict wound care decisions should include the common features 

recommended by standard wound care practices. DR (2): The ML system artifact design 

should include procedures that ensure the accuracy and consistency of expert and non-

experts’ decisions when treating chronic wound patients. The process for designing the 

ML system artifact was followed by the design science methodology [28] and went 

through two phases and two design cycles as described below. 

4 Design phase one- Developing standard of care knowledge 

artifact for wound care 

4.1 Cycle 1: Understand the domain, develop and evaluate knowledge base 

We began by developing the wound care knowledge base using requirements that 

we identified through (1) literature and (2) expert interviews as described below. 

Literature. We collected information about visual characteristics of all the chronic 

wounds from published articles and Wound Union Wound Healing Society clinical 

guideline [29]. The main inclusion criteria for both published articles and guidelines 

were wound types and their diagnostic features (wound shape, etiology, tissue colors, 



5 

etc.). Features were extracted for each wound and stored in spreadsheets. These features 

were then compared to each other by their visual and non-visual (patient history data, 

smell, warmth, etc.) characteristics. We also compared their terminologies since some 

guidelines used different names for similar wound features. This step was necessary to 

build an accurate wound feature table and then to classify wound features by their 

common terminologies. We reviewed and compared several wound assessment tools 

(Braden scale [30], Pressure Ulcer Scale for Healing (PUSH) [31], Wound, Ischemia 

and Foot Infection (WIfI) [32] and Photographic Wound Assessment Tool (PWAT) 

[33]) to find the one that uses more accurate yet visual features for our wound feature 

table. We selected PWAT, a validated visual wound assessment tool, as it was the only 

wound assessment tool designed to work with wound photos. The other tools in the 

literature were designed for bedside assessment and require inputs beyond what can be 

gleaned from an image including infection status and blood flow of the wound. PWAT 

has eight sub-scores each of which receives a score from 0 to 4 (0 represents conditions 

observed in a healing wound and 4 represents conditions observed in wounds that are 

not healing or degrading). The total score of the PWAT  adds up to 32 which represents 

a wound in a very severe condition [33].  

Wound expert interviews.  Before the interviews, we selectively resampled two sets 

of wound images from two sources for which we had IRB approval. One set had 29 

images (with high, middle and low PWAT scores) from chronic wound image 

repository of a local hospital. The second set had 6 images with doctors’ notes and 

decisions from our ongoing data collection at a local hospital. 

We conducted two rounds of semi-structured interviews with a dually credentialed 

podiatric surgeon/vascular nurse practitioner and a plastic surgeon from an academic 

medical center in the northeast (4 total interviews). Each interview took 1-2 hours and 

was video recorded and transcribed.  

At the beginning of each interview, wound experts were given clear explanations 

about the goals of the project. We asked our experts what a standard assessment tool 

would ideally include, how they assess a wound visually, and what suggestions they 

have for project improvement. We also requested our experts to visually assess only 15 

images from set one (experts annotated all 29 images with decision labels) and give 

additional expert information. In the second round of interviews, we used the same 

wound images but asked both experts to visually assess and explain their assessment 

procedure for wound depths, underlying tissues and other clinical characteristics in 

detail. Transcriptions and videos were analyzed by one of the authors, and new findings 

were added to the wound feature table. 

Developing decision rules. The review of literature, analysis of clinical guidelines and 

expert interviews helped us identify critical wound features required for assessing a 

chronic wound. These features were used to design IF-THEN rules that capture chronic 

wound conditions based on location and visual descriptors [34]. These rules were tested 

using a decision table to solve for overlapping rules. 

Evaluation of the decision rules. We tested our decision rules on 14 remaining images 

in the set one annotated by the two wound experts (see Fig. 1 for an example of wound 

image). The goal was to check each of the assessment rules to see how visual features 

are presented and verify them when necessary. Out of 14 total instances, decision rules 
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could not accurately assess two wound types (Diabetic and Venous ulcer) due to 

imprecise location and history features (85.7 % accuracy). Each corresponding rule and 

the experts’ descriptions for the wound images were analyzed and location information 

and patient history data were added based on guidelines. Modifications and changes 

were made to the rest of the rules to enhance the location rule. 

4.2 Cycle 2- Rethinking the domain knowledge 

In the second cycle we revisited the wound knowledge base and added extra features 

from a total of 14 guidelines to make the decision rules more comprehensive. The total 

predictive features from our wound feature table were raised to sixty-one visual and 

non-visual features. We used a decision table to find the best matching rules with no 

overlap (see Fig 1 for example of a decision rule). This resulted in thirty-nine decision 

rules. These rules were validated further using 4 new wound images and their 

corresponding clinicians’ notes extracted from the wound clinic EHR (clinicians’ notes 

contained decision labels). When compared with the notes presented in patients’ 

medical records, the rules provided consistent and detailed explanations regarding 

wound locations and wound tissues. We also found that VU rules required to have thin 

and thick slough descriptors for more accurate assessment. The revisions were made, 

and comprehensives of the rules were finally assured. 

 
Fig. 1. Example of chronic wound image labeled using rules from decision table 

5 Design phase two- ML system artifact 

5.1 Cycle 1- Designing ML system artifact 

Requirements. In the second phase as summarized in Table 1, we began the actual 

process of the ML artifact design using the following requirements: 

Databank: A total of 2056 unlabeled wound images. There are 1695 images from a 

local wound clinic, 249 from publicly available web sources and 114 from previous 

study. Decision labels (predictions): D1 with 51 labels from expert and 25 labels from 

novice, D2 with 57 expert labels and 245 novice labels and D3 with 97 expert labels 

and 135 novice labels. Labeling procedure: The experts labeled the image data using 

their own expertise during a 3-hour session which was video recorded. The novice 

researcher used the decision rules and labeled the 205 images with 61 features and 

decision labels separately (video recording was not necessary). Included features: We 

used 9 PWAT features (eight sub-scores and the total PWAT score), wound locations, 

and five wound types. These together resulted in 64 one-hot encoded features. 

Evaluation metrics: F-1 scores (weighted as suggested for the imbalance classification 
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problems) and area under the receiver operating characteristics (AUC). We also applied 

SMOTE oversampling with 3 iterations of 10-fold cross validation. Sample: A total of 

205 images were randomly selected and labeled with D1, D2, or D3. 

Table 1. Phase two of DSR: Designing ML system artifact  

Relevance A ML artifact can support non-expert clinicians with chronic wound 

management decisions at the point of care 

Define objective Instantiate ML artifact and demonstrate its use for non-experts 

Design & develop Trained ML artifact on 205 image samples with labels that have 

acceptable agreement level between expert and novice  

Artifact ML system capable of predicting wound decisions where all features 

are present 

Evaluate & observe Inaccurate decision labels from expert-novice inconsistency 

ML should be built based on the features expected to be available at 

the time of prediction and common to non-experts 

Create knowledge Not all expected features are available at the time of prediction 

Current knowledge Wound cleaning (debridement) is recommended for all wounds and 

must be included in assessment 

 

ML Design. We experimented with most common ML algorithms that were used by 

several studies with promising results. These are decisions trees (DT), random forest 

(RF), support vector machine classifier (SVM) and XGB. 

Evaluate and observe. The results from testing different ML algorithms showed above 

average performance for the main ML model (XGB) with overall F-1 = .806 when 

trained using novice data (given features and labels). When trained on expert data, the 

performance dropped to F-1 = .543. Table 2 depicts performance results for this initial 

set up of the ML artifact (XGB), recommended for fast deployment [35]). 

Table 2. ML artifact prediction results - Multiclass (Cycle 1) 

Classifier 
Expert Novice 

F-1 AUC F-1 AUC 

DT .530 .777 .747 .817 

RF .556 .760 .756 .800 

SVM .587 .814 .782 .876 

XGB .543 .844 .806 .862 

 

To solve for the inconsistency, we calculated the agreement level between novice 

and expert (agreed on 144 images and disagreed on 61 images) and realized that lack 

of clear labeling procedure resulted in inconsistent decision-making between them and 

this may have caused 30% of the disagreement cases. We also analyzed the videos from 

the labeling sessions and realized there were two issues with our prior labeling 

procedure: First, there were times that the expert was inconsistent about giving two 

decision labels (D1 and D2) while referring to non-urgent and urgent cases. Second, 

the expert seemed troubled labeling some images due to lack of information about the 

current treatment the wound images were under. For example, for a wound located on 
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the plantar foot, the expert was recommending both D1 (“I assume it is already in a cast 

to offload pressure”) and D2 (“this wound needs to be offloaded”). This is a common 

issue with most medical image datasets especially for chronic wound management 

where no pre-existing image database is available for routine image collection from the 

provider. 

5.2 Cycle 2- Refining ML Artifact design 

Requirements. In the second phase (Table 3), we reassessed and revised our protocol 

and added new assumptions that solve for current treatment ambiguities. We also 

resampled more images from our image databank and conducted and video recorded a 

new labeling session with the same expert. In that session, we used our new protocol 

and asked the expert to proceed with labeling based on the followings: (a) This is the 

first visit by the non-expert, (b) Non-expert clinician’s expertise does not include sharp 

debridement (c) The current wound (image) was debrided/required no debridement 

when the patient was sent home from the wound clinic, (d) Patient’s transportation to 

the wound clinic is costly, and (e) The patient has a current treatment plan based on the 

standard of care (control infection, perform daily dressing changes, offload, and VAC). 

 

Table 3. Phase two of DSR: Refining the ML artifact  

Relevance A strong ML system capable of predicting wound decisions with 

average high accuracy from both expert and novice labels 

Define objective Solve for inconsistent decision labels by expert and novice 

Design & develop Instantiate the generalizable ML artifact with less predictors 

Artifact XGB Classifier 

Evaluate & observe Reevaluate using performance metrics to demonstrate overall 

capability of the ML artifact 

Create knowledge A highly accurate ML artifact can be developed based on most 

common factors of the wound healing as predictors 

Use of the Current 

knowledge 

This ML artifact can be integrated into a smartphone App with the 

ability to solve for current treatment ambiguity 

 

We also updated the wound knowledge base with new wound features from a recent 

guideline [29]. These features were recommended for wounds that can benefit from 

regular debridement and were based on appearance of wound bed, wound edge and 

surrounding skin. Using these new features and new knowledge gained from the cycle 

1, we designed a decision pathway (see Fig. 2) to be used for next round of labeling.  

Sampled dataset: A total of random 375 images (338 training and 37 testing samples) 

were selected based on new criteria that matched current protocol and PWAT criteria. 

The images were labeled using new protocol and decision pathway shown in Fig. 2. 

Labeling procedure: The expert and novice used the new decision protocol and pathway 

to label 375 images. The expert was informed of our novel approach that solve for D1 

and D2 ambiguities for POC due to lack of information about the current treatment (i.e. 

D1 and D2 as single decision under non-urgent class and D3 under urgent class). 
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Fig. 2. The designed decision pathway used for wound assessment 

The expert had this knowledge while labeling the images. There were 189 non-urgent 

and 186 urgent labels given by the expert and 152 non-urgent and 223 urgent labels 

given by the novice. The agreement between the novice and expert (Table. 5) increased 

to nearly 85 % (with 83% for 74 overlapping images with prior set). Included features: 

We used total PWAT, wound locations, gangrene, slough, hardened necrosis, thickened 

rolled edge, epithelialization, undermining and tunneling as predictors. 

Table 5. ML artifact prediction results- Multiclass (Cycle 2) 

Agreement when 

requesting for 

current treatment 

input 

 
Expert Novice Both Avg. 

F-1 AUC F-1 AUC F-1 AUC 

DC .311 .500 .340 .500 .325 .500 

DT .633 .875 .926 .976 .779 .925 

Agreed 318 RF .587 .799 .906 .929 .746 .864 

Disagreed 57 SVC .632 .812 .858 .975 .745 .893 

Agreement 84.8% XGB .641 .791 .923 .976 .782 .883 

The difference between 

expert and novice 

models for D1 and D2 

before requesting for 

current treatment 

input is depicted  

   

 

XGB 

 

 

Confusion 

Matrix 

 

ML design and evaluation. We also analyzed how the algorithms perform comparing 

to a dummy classifier (DC) which relies on random predictions. 

In the actual labeling session (which took about 2.5 hours), wound expert had no 

trouble following new structured protocol and decision pathway and labeled all 375 

images. We then asked the expert to label six new randomly sampled images from our 

ongoing image data collection from a local wound clinic (not previously known to/seen 

by the expert or novice) to evaluate the consistency of our new protocol and the decision 

pathway. After labeling these 6 new images, we revealed to our expert the clinicians’ 
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notes and actual decisions associated with those wounds seen in the clinic. The expert 

was in total agreement with the clinician’s decisions. These 6 images were chosen to 

see whether “the decision pathway” is accurate and captures enough information 

required to make an informed decision. 

When asked, the expert noted that the percent reduction in wound surface area has 

been demonstrated to be a strong predictor of healing for venous and diabetic foot 

wounds [36, 37]. Consideration of percent area surface reduction in comparing wound 

image sequences would be of value in determining the decision pathway, using the 

existing assumptions. The ambiguities for current treatment were also solved using our 

current decision pathway using one simple rule that ask whether any current treatment 

was already given. This simple input at the point of care can raise the confidence of the 

ML system’s predictions.  

6 Conclusion 

This study demonstrated, through DSR, the development of a ML artifact that can 

predict wound care decisions generalizable to contexts where both novice and expert 

clinicians may be facing.  Results of the artifact evaluation demonstrated the acceptable 

prediction performance of the ML artifact that uses XGB model with average F-1 = 

.782 for both novice and expert decision makers. All the algorithms performed better 

than the dummy classifier that uses random predictions. These results also demonstrate 

that this prediction capability for XGB ML artifact can be achieved using image data 

(common wound features as predictors and decisions as labels) that are given by either 

novice or expert. The most predictive features are thick slough or hardened necrosis, 

thickened rolled edge, total PWAT, thin slough, anterior leg and dorsal toe, 

respectively which confirm the usability of our designed decision pathway.  

Comparing to the current wound care solutions that require experts to make 

treatment decisions [25-27], our ML solution provides POC decision support using 

wound features that non-expert clinicians commonly report when documenting 

wounds.  Non-expert clinicians provide most of the wound care within the wound care 

community and their ability to determine wound conditions at the appropriate time 

directly affect the quality of treatment these patients receive. Although current solutions 

provide tools to efficiently document these common wound features, non-experts’ 

inabilities to determine the correct decision pathway (when certain features are present) 

at different stages of chronic wound development results in delayed and thus more 

aggressive treatments (often surgical amputations) that cost a lot for the patients and 

their families.  

7 Limitation and future research 

This study has some limitations. First, our sample size of 375 wound images with no 

clinical notes (decisions and measurements) may not be enough to demonstrate 

generalizability of the ML artifact due to the wound care domain that has limited 

available image datasets with associated clinical notes. In this challenging environment, 
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we showed several demonstrations prior and post development of a high performing 

ML artifact through iterative design cycles. Future research can address this by adding 

into the ML artifact database the wound surface area measurements and comparison 

with subsequent images to calculate the percent change. Moreover, user adoption and 

effective delivery of the predictions from our ML artifact to the final user provide rich 

opportunities for future research. Second, in current study a non-expert clinician was 

considered a novice researcher. Although this may be another threat to generalizability 

(when ML artifact is used by real-world users), we expect their agreement level with 

experts to be higher thereby allowing for higher ML performance. The next phase 

focuses on the design and evaluation of a smartphone App using image processing 

techniques that allow for automatic feature extraction of our predictors.  
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