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Abstract—The ubiquity of sensor-rich smartphones has in-
creased interest in mobile context-aware sensing applications in
domains such as ambient assisted living, remote health care, and
sports injury detection. Recognizing the user’s current context
by analyzing their smartphone’s sensor data is a critical problem
for such applications. One of the major technical challenges for
context recognition is reliable feature extraction due to coarse-
grained labeling. In sensor data coarse-grained labeling, only
certain parts of smartphone sensor data are truly representative
of the assigned label, while their exact duration and location
within the segment are unknown. To address this, we propose
DeepContext, a deep learning based network architecture for
recognizing a smartphone user’s current context. DeepContext
uses a Convolutional Neural Network (CNN) with parameterized
compatibility-based attention to discover and focus on important
parts of smartphone sensor data, mitigating coarse-grained weak
labels and extracting salient discriminative features. DeepContext
uses a joint-learning fusion strategy that utilizes both domain-
specific handcrafted features and features that are autonomously
generated by a Convolutional NeuralNetwork (CNN) . We demon-
strate that DeepContext consistently outperforms prior state-of-
the-art context recognition and human activity recognition deep
learning models on smartphone context sensor data gathered
from 100 participants by nearly 5% in Balanced Accuracy.

Index Terms—Ubiquitous and mobile computing, Context-
aware computing, Human context recognition, Deep learning.

I. INTRODUCTION

Human Context Recognition (HCR) is the task of detecting
a person’s current situation including their location, physical
state, and other semantic information [1]. Accurate HCR is an
important problem in context-aware applications targeting a
wide variety of domains including smart homes [24], assisted
living [25], fitness tracking [22], military deployment [21],
and mobile health [14], [17], [22], [28]. In healthcare, accurate
HCR can facilitate passive context-specific patient assessments
and continuous monitoring, decreasing operational costs [17].
Historically, HCR systems are used to determine user context
utilizing data from custom body-worn sensors [36]. However,
wearing such dedicated hardware and maintaining them (such
as keeping their batteries charged) imposes a significant burden
on users. Fortunately, smartphones have recently become pop-
ular for context-aware applications [12], [27], [30] as they are
now ubiquitously owned (over 3.2 billion people globally [29])

This work is supported by the Computer Science Dept. at Worcester
Polytechnic Institute and the DARPA WASH project, grant HR00111780032-
WASH-FP-031.

and are often equipped with a wide variety of built-in sensors
such as accelerometers, gyroscopes and light sensors [12].

Semantic Contexts for Health Assessment Testing: As part
of our DARPA-funded Warfighter Analytics for Smartphone
Healthcare (WASH) project, our group is developing methods
to determine a user’s context from sensor data gathered
passively from their smartphone. We define a person’s context
as the tuple: <Physical State, Phone Prioception, App Usage,
Social>, as described in Table (I). We focus on recogniz-
ing specific user contexts in which high-specificity health
assessments for Traumatic Brain Injury (TBI) and infectious
diseases can be performed on monitored smartphone users.
For example, if our sensing application accurately recognizes
a user’s context to be < ∗,Phone In Hand, ∗, ∗ > (with ”*”
denoting a wild card), then additional tests to assess whether
their hand is shaking (tremors) can be performed by analyzing
data from their phone’s accelerometer and gyroscope sensors.
Shaking Hands (tremors) is a symptom of TBI and other
diseases [18]. Examples of TBI and infection disease tests
that could potentially be performed in specific user contexts
recognized by HCR systems are listed in Table (II). In this
work we do not focus on the detection of these ailments, but
rather on detecting the contexts from which ailment tests can
later be run.

Item Potential Values

Physical Activity {Walking, Running, Sitting, . . .}
Phone Prioception {In Hand, In Bag, On Table, In Pocket}
Social {Alone, With People}
App Usage {Multimedia, Texting, Games . . .}

TABLE I: WASH Human Behavioral Context

Challenges of Context Detection: HCR systems typically
assume strict (context) labels for supervised learning [30],
wherein the labeled training data is indeed a true representative
of its assigned label. In reality, the data labels in HCR datasets
are typically coarse-grained, in the sense that only a subset of
smartphone sensor data that is assigned a certain label exhibits
patterns truly representative of that label.

State-of-Art Strategies: Prior studies have focused on the
related problem of recognizing ambulatory human activities
(e.g., sitting, walking, running, etc.), also called Human Activ-
ity Recognition (HAR), though they typically classify the sen-
sor data into only one out of k possible labeled activities [10],



Fig. 1: HCR using smartphone sensor data.

[13]. However, while human context includes the person’s
current activity, it is also critical to include other semantic
information such as their location and social situation. While
there exist a few HCR methods that aim to classify human
behavioral context [27], [30], they still do not address coarse-
grained labeling.

Our solution: In this paper, we present DeepContext, a
HCR system that uses neural networks to recognize the
smartphone user contexts in which the TBI and Infectious
diseases tests can be performed (See the Background section).
DeepContext has two major innovations. First, DeepContext
employs a joint-learning fusion strategy that utilizes both
domain-specific handcrafted features and features that are
autonomously generated by a Convolutional Neural Network
(CNN). Second, DeepContext addresses the problem of coarse-
grained labels by discovering and giving higher importance to
the most salient regions of the sensor data. These regions are
expected to correspond to a higher predictive value for specific
contexts. This allows our model to overcome potentially noisy
inputs, which is achieved by DeepContext’s parametrized
compatibility-based attention mechanism. Also, as many of
our target activities can be performed concurrently (e.g.,
walking and talking on the phone), DeepContext formulates
the HCR problem as a multi-label classification problem in a
manner similar to Vaizman et al [30].

II. RELATED WORK

Various deep-learning architectures have been proposed for
Human Activity Recognition (HAR) from smartphone sensor
data [8], [19], [23], [34], [35]. However, these architectures
classify sensor data into only one of k possible labeled activ-
ities [10], [13]. Moreover, these conventional human activity
recognition methods are not suitable for real-world problems
since most of them assume that the sensor is placed at a fixed
location on the body (hip, wrist or waist) [31]. Inspired by
recent advancements in using multiple modalities for deep-
learning models in other domains including computer vision
and natural language processing, multiple-modality feature
learning on sensor data has been found to be an effective way
of learning more discriminative features and more generaliz-
able models that can fit real-world settings [23], [30].

Vaizman et al recently gathered and studied a dataset
containing a large collection of self-reported labels, fusing
several smartphone and smartwatch modalities, classifying
human behavioral context using shallow machine learners
with handcrafted features [30]. The two leading deep learning
methods are: 1) ExtraSensory: multi-layer perceptron context
recognition architecture using handcrafted features and 2)
DeepSense: generic deep learning-based activity recognition
model using raw sensor data. These two methods do not
address the challenge of coarse-grained labeling or weakly
supervised learning.

Numerous attention mechanisms techniques have been pro-
posed to improve classification accuracy and providing ex-
plainability in document classification, machine translation and
recently for object detection and localization in images [11].
Wang et al [32] used an attention mechanism for human
activity recognition from accelerometer data, addressing the
same weak supervision problem as DeepContext, but applied
it to recognizing a relatively smaller set of mutually exclusive
labels. DeepContext’s attention model is similar to that of
Wang et al [32] but uses a parameterized compatibility-based
attention model on multi-sensor CNNs. We also propose a
new way of incorporating an attention mechanism on multiple
sensors by first using a separate-and-merge [35] CNN and
applying attention layers on features generated by single-
sensor CNNs as well as on features generated by CNNs that
analyzed the merged sensor outputs. The DeepContext multi-
sensor fusion framework is also motivated by the ability to
learn cross-sensor correlations using deep-learning on multiple
modalities for ubiquitous computing [23].

III. BACKGROUND

A. Background on the WASH Contexts

To explain our context definition (Table (I)), an individual’s
Physical Activity refers to what activity they are currently
performing including ambulation activities such as walking
or sitting, as well as complex activities such as eating, using
the toilet or watching TV [13]. Phone Prioception describes
the position or pocket in which the smartphone is currently
being carried including whether the phone is in the user’s
bag, pocket, or on the table. Detecting a phone’s prioception
is important as signal patterns captured by the smartphone for
the same activity (e.g., walking) may vary for different phone
placements [16]. A phone’s prioception could also be used to
infer user-specific information such as their stride length [4]
that can be used in TBI and infectious disease gait tests. App
usage information can provide insights into an individual’s
behavior and health state. For instance, a decrease in the usage
of social apps may indicate that the individual has begun
to isolate themselves, a sign of TBI [3]. Social state of the
individual (alone, with friends or co-workers) measures their
degree of social interaction and isolation, and provides insights
on whether the individual might have mental health ailments
such as depression [6]. The behaviors and movement patterns
of TBI patients are similar to those with depression.



B. Attention Mechanisms

Attention mechanisms are motivated by how humans pay vi-
sual attention only to specific regions of a picture or correlating
words in a sentence [2], [33], [37]. Although some attention
mechanisms are mainly used during post-hoc analysis of neu-
ral networks, several trainable attention mechanisms have been
effective not only in increasing the neural network model’s
performance, but also in explaining the final predictions by
facilitating the visualization of attention scores. There are two
main types of attention mechanisms: 1) hard attention and 2)
soft attention [33]. Hard attention is a stochastic process and
often cannot be trained through back-propagation. Thus, the
distribution of attention scores has to be assumed and fixed
a priori [33]. Soft attention uses a probabilistic distribution
function to apply attention scores to the source input [33],
which makes it more suitable for sensor data, where a fixed
distribution of scores, or the size and number of attention
regions to focus on cannot be assumed a priori. Our attention
mechanism is inspired by a promising model proposed by
Jetley et al, an end-to-end trainable attention mechanism for
CNN for the task of object detection and localization [11].

Traumatic Brain Injury
Ailment Test Test Context

Worse Reaction Time <Interacting with Phone, in Hand, *, *>
Increased Light Sen-
sitivity

<*, in Hand, *, *>

Unilateral Pupil Dila-
tion

<Interacting w/ Phone, in Hand, Texting,
*>
<Interacting w/ Phone, in Hand, Video chat,
*>

Hands Shaking <*, in Hand, *, *>
Slurred Speech <Talking into Phone, *, *, *>

Infectious Diseases
Ailment Test Test Context

Increased Cough Fre-
quency

<Coughing, *, *, *>

Increased Sneezing <Sneezing,*, *, *>
Resting Heart Rate <Sitting, in Pocket, *, *>
Increased Toilet use
Frequency

<Using Toilet, *, *, *>

Change in respiration <Sleeping, on Table, *, *>
<Exercising, *, *, *>

Both TBI and Infectious Disease
Ailment Test Test Context

Increase In Activity
Transition Time

<Lying down, Phone In Pocket, *, *>

<Sitting, Phone In Pocket, *, *>
<Standing, Phone In Pocket, *, *>

Change in Sleep
Quality

<Sleeping, *, *, *>

Change in Gait <Walking, Phone in Pocket/Hand, *, *>

TABLE II: Context-specific ailment tests to detect TBI and
infectious diseases and relevant human contexts.

C. Weakly supervised learning

Traditionally, in supervised learning tasks such as classifi-
cation and regression, predictive models are trained on a large
number of annotated training examples. A training example
comprises of 1) an input feature vector (or instance), and an
associated label (or ground-truth). Weakly supervised learning
is categorized into three typical types: 1) incomplete supervi-
sion: utilizing unlabeled training data, 2) inexact supervision:
only coarse-grained labels are provided, and 3) inaccurate
supervision: where the labels are not always true [38]. In
numerous tasks, it is difficult to gather strictly supervised
information due to the costly data-labeling process. Thus,
designing models that can work under weak supervision is
desirable [32], [38]. DeepContext addresses coarse-grained
labels in the HCR dataset.

IV. DeepContext

N: Raw Data segment size. K: Handcrafted Features dimension

Fig. 2: DeepContext architecture.

A. Overview

Our deep learning architecture for Human Context Recog-
nition (DeepContext) is comprised of two CNNs that jointly
learn from raw smartphone sensor data and handcrafted
features in parallel, fusing their outputs. Fig. 2 shows the
overall architecture of DeepContext. This joint learning fusion
approach enables our model to learn not only discriminative
features from handcrafted features and raw sensor data, but
also from a shared representation, discovering complex cross-
modality correlations. Moreover, the attention mechanism uti-
lized enables DeepContext to learn salient features, giving
higher weights (importance) to regions of the raw sensor data
that contain predictive features for context recognition. Figure
(3) shows DeepContext’s classification pipeline. Sensor data is
initially segmented using sliding windows to generate training
instances, which are then input to CNN layers that extract
feature vectors that are utilized for context prediction later
in the pipeline [15]. The design of our CNN feature extractor
follows a separate-and-merge strategy proposed in [35], where
data generated by each sensor is first passed into a single-
sensor CNN model that learns local interactions within each
sensor. The outputs of individual single-sensor CNNs are then
concatenated together to form a cross-modality representation



that is then passed to additional CNN layers to learn global
cross-sensor interactions.

Fig. 3: Classification Pipeline for Raw Sensor data - showing
a CNN feature generation approach.

B. Parameterized Compatibility-Based Attention Convolution
Neural Network (PAC-CNN)

The context labels that subjects assign to smartphone sensor
data during data gathering studies is often coarse-grained,
making it challenging to create reliable context classifiers.
Specifically, only relatively small regions of data that a user
has assigned a given context label (e.g. walking) may actually
be truly representative of that context. DeepContext’s attention
mechanism tries to learn the most relevant regions of the sen-
sor data, which exhibit patterns that predict specific contexts.
The intuition behind the design of its attention mechanism is
similar to that proposed by Jetley et al [11].

Fig. 4: The attention mechanism assigns more importance to
regions of data that contain salient context-specific features
extracted from raw sensor data. For instance, the attention
mechanism learns that the left side of the accelerometer signal
better represents Phone on Table context and assigns it higher
weights.

In Fig (4), the attention model ignores parts of the sen-
sor data when trying to classify the ”Phone on the table”
context. The model learns predictive patterns and increases
their influence, while simultaneously suppressing irrelevant
and potentially noisy parts of the data. As more data is
utilized in training the model, it learns representations that
are more generalizable and work better in real-world settings.
The important regions detected within the data form saliency
maps that could be analyzed to interprete classifier outputs,
improve its performance and potentially facilitate the data-
labeling process [32].
Ls = {`s1, `s2, · · · , `sn} are intermediate (local) features

extracted by convolutional layer s ∈ {1, 2, . . . , S}, where lis
is extracted from the ith node out of a total of n nodes, each
corresponding to one spatial location in the local feature vector
Ls.

In order to adapt the attention mechanism of Jetley et
al [11] that was designed for images, to fit the multiple-

modality nature of smartphone sensor data, we considered s to
be various intermediate layers in the seperate-and-merge [35]
CNN pipeline.

The flattened (global) feature vector G generated by the
fully connected layer is combined with the final set of CNN-
extracted (local) features. The attention mechanism tries to
learn a compatibility score C

(
L̂s, g

)
= {cs1, cs2, . . . csn} be-

tween the local features Ls and the global feature vector G,
and replaces the final feature vector with an attention-weighted
local features [11].

To calculate the compatibility score, G and lis are con-
catenated using an addition operation (additive attention [2]),
followed by a dot product with a trainable weight vector u
that can be expressed as [11]:

csi = 〈u, lsi +G〉 , i ∈ {1, n} (1)

These learned compatibility scores csi encourage the model
to learn discriminative features tailored to different contexts. In
order to utilize these learned compatibility scores C(Ls, G) =
{cs1, c2s, . . . , csn} to produce a 1-dimensional vector As =
{as1, a2s, . . . , ans }, a down-sampling convolutional layer is first
applied, then the compatibility scores are normalized using a
softmax function:

asi =
exp (csi )∑n
j exp

(
csj
) (2)

The last step involves producing the final attention estima-
tion gs, replacing G, by taking the element-wise weighted
average of the corresponding normalized compatibility scores
in As with each node in Ls.

Fig. 5: Applying the attention mechanism on the separate-
n-merge CNN architecture, where we use a separate CNN
for each sensor modality, concatenating the resulting CNN
outputs that are finally passed to the merged-sensors CNN.
Only attention-weighted features are used for subsequent clas-
sification layers.

In Fig (5) we show the CNN architecture used.

gs =

n∑
i=1

asi · lsi (3)



C. Joint-learning Fusion

Taking advantage of the joint-learning fusion strategy, we
can accommodate various modalities that cannot be fed to
a CNN directly. By learning a shared representation be-
tween handcrafted features and CNN-generated features, our
model increases its ability to learn cross-sensor representations
that are more discriminating for prediction tasks [23]. This
shared representation can act as a regularization technique
and discover additional task-specific correlations between the
handcrafted and CNN-generated features. To generate this
shared representation, we first forward handcrafted features
to a multi-layer-perceptron neural network, which consists of
two layers, 16 hidden nodes in each layer, and uses Rectified
Linear Units (ReLU) as its activation function. Then, we
concatenate the resulting vector along with CNN-generated
features after they are mapped to the same dimension. A
sample list of handcrafted features [26] extracted from our
smartphone sensor data is provided in Table III.

Feature Formulation

Arithmetic mean s̄ = 1
N

∑N
i=1 si

Standard deviation σ =
√

1
N

∑N
i=1 (si − s̄)2

Median absolute deviation mediani (|si −medianj (sj)|)

Frequency signal Skewness E
[

(s−s̄)3
σ

]
Frequency signal Kurtosis E

[
(s− s̄)4

]
/E
[
(s− s̄)2

]2
Interquartile range Q3(s)−Q1(s)

Signal Entropy
∑N
i=1 (ci log (ci)) , ci = si/

∑N
i=1 sj

Pearson Correlation
coefficient

C1,2/
√
C1,1C2,2, C = cov (s1, s2)

Spectral energy of a
frequency band [a, b]

1
a−b+1

∑b
i=a s

2
i

s: signal vector, N: signal vector length Q: quartile

TABLE III: A sample list of handcrafted features used for
our sensor data, applied on accelerometer, gyroscope and
magnetometer sensors [26].

V. EVALUATION

We conducted experiments to evaluate DeepContext’s per-
formance for various segmentation window sizes (in sec-
onds). First, we present and an overview of the WPI-WASH
dataset utilized in our evaluations. Secondly, we describe the
evaluation protocol and metrics used to assess the model’s
performance, given the imbalanced nature of the dataset.
Finally, we assess the effectiveness of different components
of DeepContext and discuss our empirical findings.

A. Dataset

We evaluated DeepContext’s performance on our human
smartphone context recognition dataset collected from 100
participants as part of our WASH project. In a scripted fashion,
subjects were asked to visit 30 contexts while a smartphone
data gathering app continuously gathered sensor data. The
entire data gathering session lasted approximately 1 hour per

Phone Placement

Phone in Bag Phone in Hand
Phone in Table Facing Down Phone in Table Facing Up
Phone in Pocket

Long activity

Walking Sitting
Jumping Jogging
Lying Down Running
Standing Sleeping
Stairs - Going Up Stairs - Going Down
Talking On Phone Trembling
Typing In Bathroom

Short activity

Coughing Sneezing
Standing up (transition) Laying Down (transition)
Sitting Down (transition) Sitting Up (transition)

TABLE IV: Contexts for which data was gathered in our
WASH Study Collected Contexts - Expanded into 25 binary
labels

subject. When expanded, the 30 contexts expanded to the
25 binary labels listed in Table (IV). Our experiments only
studied DeepContext’s performance for recognizing labels
corresponding to ”Physical State” and ”Phone Placement” sub-
categories of the contexts defined in Table (I) The dataset was
manually annotated by proctors who oversaw the study.

Coarse-grained labeling: The labels they assigned are
however coarse-grained, not fine-grained labels. Formally, in
our training data set D = (X1, y1) , . . . , (Xm, ym) where
Xi = {xi1, . . . , xi,m} ⊆ X is a bag, yi ⊆ Y = {0, 1},
Xi is a positive bag, i.e. yi = 1, if there exist(s) one or
more positive xip, while p ∈ {1, . . . ,mi} is unknown. In
other words, within each training sensor segment, only certain
sub-segment(s) are truly representative of the assigned label.
However, their exact duration and location within the segment
are unknown (corresponding to inexact supervision) [38].

B. Implementation

Our separate-n-merge CNN is has three layers per single-
sensor CNN, and three additional layers for the merged-
sensors’ CNN. The number of feature maps generated in each
CNN layer is 64. We also found that using larger filter sizes
at the beginning of the pipeline produced better results, so we
selected 8, 6, and 4 respectively as our filter sizes. We utilized
Rectified Linear Units (ReLU) as our non-linear activation
function. Our input batch size was 128 and we utilized dropout
regularization with a probability of 20%, batch normalization,
as well as L1/L2 normalization with a coefficient of 1e−5. The
model was trained for 100 epochs with early stopping if the
validation loss stopped improving, to decrease the chance of
over-fitting. For visualizing compatibility scores, we followed
the same procedure used in [32].



C. Evaluation protocol

To ensure that our model generalized well when utilized
on data from new subjects, previously unseen subjects during
the training process, we adopted a user-level cross-validation
approach (5 folds). Similar to the user-level splitting approach
utilized by Vaizman et al [30], all of a subject’s data may
appear in either the training or test set, but not in both. Our
final output is a multi-label output vector, where each label
produced is a binary output (E.g walking vs not walking).
To address the class-imbalanced nature of our WASH study
dataset, we utilized Balanced Accuracy (BA), as our metric
for evaluating our model’s performance [5].

BA(D) = 1

2

(
TP

TP + FN
+

TN

TN + FP

)
which is also:

BA(D) = 1

2
(Sensitivity + Specificity)

Also, in order to compute the BA of the context tuple
after recomposition from the binary labels, we adopted macro-
averaging that treats all binary labels with equal importance.
That is, we calculate the BA score for each binary label
separately and report the average across all binary labels
(macro BA).

BAmacro(D) =
∑
ci∈C

BA(D, ci)
|C|

.
When there are no annotated examples for ci, then

BA(D, ci) is excluded from BAmacro calculation.
We compared our model performance against state of

the art deep learning context (ExtraSensory MLP [30]) and
Human Activity Recognition (HAR) (DeepSense CNN-GRU
[35]) models. To ensure that our comparison was fair, we
only utilized handcrafted features extracted from data from
three sensors accelerometer, gyroscope and magnetometer.
DeepContext and the other models compared against are all
implemented in PyTorch [20], based on the authors’ published
source codes. Each model was then fine-tuned on our dataset
and the same highly tuned number of layers and feature maps
hyper-parameters for CNN were used in the DeepSense archi-
tecture to illustrate the efficiency of our attention mechanism.
We generated results for a variety of window segmentation
sizes to check that our models’ performance was consistent.

D. Results

The overall performance of all evaluated models on our
WPI-WASH dataset can be observed in Fig (6), where we
compare DeepContext to state-of-the-art methods. Addition-
ally, results for each label are reported in Table (V).

In order to demonstrate the effectiveness of DeepContext,
in Figs (7) and (8), we evaluate the improvement that can
be attributed to each component separately. The two compo-
nents are 1) Parameterized compatibility-based attention and
2) Joint-learning fusion to incorporate handcrafted features.

Fig. 6: DeepSense performance compared to other state-of-
the-art deep learning methods

Label DeepSense [35] ExtraSensory [30] DeepContext

Phone in Bag 0.8940 ± 0.020 0.7635 ± 0.045 0.8730 ± 0.036
Phone in Hand 0.8751 ± 0.028 0.7292 ± 0.037 0.8862 ± 0.002

Phone in Table, Facing Down 0.9406 ± 0.019 0.8720 ± 0.043 0.9370 ± 0.042
Phone in Table, Facing Up 0.9529 ± 0.012 0.8909 ± 0.042 0.9502 ± 0.024

Phone in Pocket 0.8201 ± 0.057 0.6838 ± 0.011 0.8409 ± 0.036
Walking 0.9074 ± 0.027 0.8936 ± 0.022 0.9191 ± 0.026

Sitting 0.9101 ± 0.037 0.8718 ± 0.032 0.9143 ± 0.025
Jumping 0.9250 ± 0.025 0.9004 ± 0.039 0.9396 ± 0.004
Jogging 0.9686 ± 0.004 0.9549 ± 0.006 0.9739 ± 0.004

Lying Down 0.9276 ± 0.017 0.8879 ± 0.011 0.9040 ± 0.022
Running 0.9267 ± 0.024 0.9193 ± 0.022 0.9586 ± 0.013
Standing 0.8224 ± 0.011 0.8266 ± 0.022 0.8520 ± 0.034
Sleeping 0.9370 ± 0.022 0.8732 ± 0.035 0.9175 ± 0.027

Stairs - Going Up 0.7997 ± 0.048 0.8160 ± 0.010 0.8944 ± 0.041
Stairs - Going Down 0.7408 ± 0.072 0.7860 ± 0.035 0.8455 ± 0.041

Talking On Phone 0.9499 ± 0.003 0.8581 ± 0.022 0.9152 ± 0.001
Trembling 0.8851 ± 0.114 0.8657 ± 0.065 0.9414 ± 0.004

Typing 0.9727 ± 0.020 0.9008 ± 0.045 0.9719 ± 0.017
Bathroom 0.9072 ± 0.035 0.8488 ± 0.038 0.8929 ± 0.004

Average 0.89804 0.84961 0.91197

TABLE V: Comparison of our Results with state-of-the-art
methods, for window size = 20 seconds

Those components were placed on top of our core separate-
n-merge CNN architecture. A magnified view of the two
proposed components can be seen in Fig (7) to clearly show
the usefulness of each one. The two proposed components
are compared against our core Separate-n-merge CNN, using
the same number of layers and fine hyper-parameters. We
also experimented with various ways to increases the model’s
performance including 1) adding an LSTM layer after the final
extracted features, and 2) increasing the complexity of the
model by placing residual skip links on the merged-sensors
CNN (Fig. 9)

VI. DISCUSSION

We can observe that DeepContext consistently outperforms
the state-of-the-art approaches compared against especially for
larger window sizes when the data captures more background
noise, and the user-provided ground-truth labeling becomes
more coarse-grained and less accurately associated with the



Fig. 7: Evaluating the effectiveness of DeepContext compo-
nents separately

Fig. 8: Evaluating the effectiveness of DeepContext compo-
nents separately - magnified view

entire training example. Additionally, from an application
perspective, accurate predictions for larger segments are more
useful, which indicates that more discriminative features have
been learned regardless of the window size utilized. Intuitively,
as we increase the window size, there is a greater chance
for the attention mechanism to learn context-specific salient
features, and more effectively suppress background noise
occurring in the sensor data.

We speculate that the performance drop when using only
handcrafted features with the core Separate-N-Merge CNN
classifier might be because of the difficulty of capturing useful
context-specific features when the window size gets larger. In
Fig (9), there was a slight improvement when we tweaked the
DeepContext architecture, by adding residual skip links [9],
which demonstrates the potential for achieving even better
performance by using such mechanisms on sensor data. We
will explore residual skip links in future work. Figure (7)
shows the significant improvements that our proposed sub-
modules achieves on top of the Separate-n-merge architecture.

By looking at the detailed reported results per label, where

Fig. 9: Various ways to increase DeepContext’s performance

we evaluated DeepContext’s performance in comparison to
state-of-the-art methods. DeepContext outperforms the other
models for more than half of the labels. Even for labels where
another model outperforms DeepContext, it’s performance is
very close score to that of the winning model. We speculate
that this is due to the utilization of both deep learning
based generated features and the domain-specific handcrafted
features. One of the most challenging activities to detect, Stairs
- Going Up and Stairs - Going Down, DeepContext is able
significantly outperform the other state-of-the-arts methods.
Detecting whether the subject is avoiding using stairs might
provide useful insights about their mobility levels, which could
facilitate the identification of potential ailments [13].

VII. CONCLUSION

We demonstrated the applicability of DeepContext, a deep
learning based architecture for detecting a smartphone user’s
current context. Using a Convolutional Neural Network (CNN)
with parameterized compatibility-based attention, DeepCon-
text is able extract salient discriminative features under weakly
labeled scenarios. Utilizing an attention mechanism, DeepCon-
text can autonomously learn context-specific salient features,
while suppressing potentially irrelevant parts of the input, tack-
ling the issue of coarse-grained labeling that usually exists in
smartphone sensor data. We have experimentally demonstrated
the effectiveness of jointly learning from a combination of
handcrafted features and CNN-generated features extracted
from raw smartphone inertial sensor data. DeepContext con-
sistently outperforms state-of-the-art methods on smartphone
context sensor data gathered from 100 study participants. As
future work, we aim to leverage additional contextual infor-
mation gathered from subjects in-the-wild, such as semantic
location, wireless connectivity, and phone state. DeepContext
could also benefit from utilizing a large amount of data that
subjects did not label in our study, using methods such as semi-
supervised learning and context-aware semantic reasoning [7]
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