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unpredictable. Thus, instead of selecting a fixed plan, AMR dynamically routes batches
of tuples to operators in the query network based on up-to-date system statistics.
The workload of query access patterns in AMR systems is ever changing. Selecting a single
best index may not efficiently support all query access patterns at all times. While

Keywords:

Data stream database systems maintaining multiple indices to match a variety of query access patterns increases overhead
Indexing and decreases throughput. Index design, while paramount for efficient query execution,
Adaptive query processing is particularly challenging in AMR systems as the indices must serve the continuously

evolving query access patterns. Our proposed Adaptive Multi-Route Index (AMRI) employs
a bitmap time-partitioned design that serves a diverse ever changing workload of query
access patterns and remains lightweight in terms of maintenance and storage requirements.
We propose a high quality yet efficient assessment method modeled after hierarchical
heavy hitters that exploits route relationships by modeling the frequency of the search
access patterns used as nodes in a lattice. We also design assessment scheduling methods
for AMRI based upon detecting changes in the search access patterns used. Our AMRI
incorporates migration strategies that seek to meet the needs of both old partially serviced
and new incoming search requests. Our experimental study using both synthetic and real
data streams demonstrates that AMRI strikes a balance between effectively supporting
dynamic stream environments while keeping the index overhead to a minimum. Using
an environmental data set collected in the Intel Berkeley Research lab, our AMRI produced
on average 68% more cumulative throughput than the state-of-the-art approach.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction
1.1. Background on index tuning

Abadi et. al. [1] predicted the increase in the number of monitoring applications. Many monitoring applications were
once simple (i.e., a simple query). They have become increasingly more complex (i.e., multiple complex queries that share
data). Consider the stock market. A few years ago, a market analyst may only have assessed the current stock price and
volume. Today, to track rapid market shifts, the same analyst has readily access to many more up-to-date statistics on
the latest company and market sector information from news feeds, web sites, and blogs. In short, monitoring applications
increasingly require complex queries integrating may stream sources.
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Such complex queries must efficiently process over long durations with possibly frequent data fluctuations [2]. Fluctu-
ations cause periodic variances in the selectivity and performance of operators. This can render the most carefully chosen
plan sub-optimal and possibly ineffective [3]. To address this, much research has been done on data stream management
systems (DSMS) that continuously adjust the query path along which incoming tuple are processed [3-7]. We refer to these
as Adaptive Multi-Route systems (AMR).

AMRs adapt the execution order of operators (i.e., the query path) to current statistics. The prominent AMR, Eddy [3],
utilizes a central routing operator. Given statistics, it decides for each tuple which operator to visit next. The query path
taken thus far by tuple t; determines which tuples from the different incoming streams, tuple t; will be composed of.
When t; is processed by join operator op;, all the tuples that compose t; are used to generate the criteria to locate tuples
stored in op;’s state that should join with ¢;. Tuples may take different query paths and thus can be composed of tuples
from different streams. Thus they will generate diverse search criteria that must be efficiently supported by join operators.
Given the complexity of monitoring application queries, current DSMS cannot create a separate index for all possible search
criteria. Worst yet, when path fluctuations occur, AMRs must quickly and precisely adjust the index configurations in use to
best serve the new path(s). This challenging problem, ignored by the literature thus far, is the focus of our work.

1.2. AMR index requirements

Traditional off-line index tuning approaches select the “best” fixed index structure off-line [8-11]. They do not meet the
needs of AMRs where the search request workload is in constant flux. AMRs require an online index tuning solution. Such
approaches continuously evaluate and adjust the index structure online via the index tuning life cycle [12-15]. The steps in
the life cycle are to: 1) identify changes in the search request workload (assessment), 2) locate the “best” index structure
(selection), and 3) re-index states using the current “best” index structure (migration).

Unlike indexing in static database systems, AMRs face several unique challenges. 1) Periodically the router sends tuples
to suboptimal operators to update statistics [3]. The access patterns generated by such tuples often have low frequencies.
The frequency statistics from such tuples often have little influence on the final index structure selected. However, they
add additional overhead to both index assessment and selection. To reduce such overhead, AMRs must adjust the quality
and quantity of statistics collected. If too few statistics are kept the overhead may be reduced but a suboptimal index
configuration may be found. If too detailed statistics are kept, the optimal index may be located but it may require too
high an overhead. 2) AMRs must continuously assess and adjust indices to best support the query paths currently in use.
The abruptness and frequency of such changes make this extremely challenging. Furthermore the overhead of assessing
indices must not detract from producing rapid results. 3) When the query paths used to process incoming tuples evolve, the
system will contain old partially serviced tuples processed along query paths different from the new “best” query paths. To
minimize response times AMRs must efficiently process both old partially serviced and new incoming tuples.

1.3. The proposed approach: AMRI

In short, AMRs require an index design that: 1) supports diverse search criteria, 2) requires minimal maintenance,
3) compact so to fit in main memory, and 4) can efficiently process all search criteria.

AMRs require index tuning, following the life cycle, that: 1) efficiently and accurately identifies abrupt key query path
changes while not detracting from the production of rapid results (assessment), 2) maintains the quality of the best index
configuration selected within a preset threshold (selection), and 3) determines the best approach to re-indexing stored tuples
to efficiently process the old partially serviced tuples (migration). Our proposed Adaptive Multi-Route Index (AMRI) solution
incorporates a physical index design and customized index tuning methods that meet the above requirements.

Our preliminary ideas on AMR index assessment was published in a workshop proceeding [16]. In this work, we focused
on the design of two assessment methods called Compact Self Reliant Index Assessment CSRIA, and Compact Dependent Index
Assessment CDIA. Both reduce assessment overhead by compacting the statistics collected. CSRIA utilizes a heavy hitter
method [17]. CDIA tracks statistics in a lattice, exploiting the dependent relationships between the search criteria, and
employs a hierarchical heavy hitter method [18].

In this paper, we extend our basic index assessment to efficiently support the index tuning life cycle by incorporating
scheduling assessment methods as well as efficient index migration methods. We also establish the bounds on the optimality
(i.e., quality) of the index configuration found during selection using the compact statistics generated by our CSRIA and CDIA
assessment methods.

Our new contributions include:

1) We enhance our index design to support both old partially serviced and new incoming search requests by employing a
time-partitioned index structure.

2) We formulate and prove that the effect of statistic compaction on the potential loss of quality of the selected index can
be bounded by a preset constant.

3) We propose methods for scheduling index tuning. In particular, our Triggered method schedules assessment on states
with observed routing shifts.
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Fig. 2. Indexing in AMR systems.

4) We propose a Partial Migration strategy that migrates only some stored tuples based on their estimated future use.
Through our study of migration approaches we explore the question of whether or not it is effective to maintain an
index configuration for subsets of stored tuples.

5) We conduct extensive experiments (beyond those in [16]) to evaluate the effectiveness of our proposed scheduling and
migration methods using both real and synthetic data over a large variety of experimental conditions including varying
the amount of fluctuations in the query paths used. We demonstrate that AMRI always wins over the current AMR
index approaches, including hash indices [5] and bitmap indices [19].

2. Motivation
2.1. Example of search requests with varying criteria

Query Q1:

SELECT * FROM StreamA, StreamB, StreamC

WHERE StreamA.A1 = StreamB.A1 AND StreamB.A3 = StreamC.A3 AND StreamC.A2 = StreamA.A2
WINDOW 30 seconds

Example. Consider query Q1, the AMR in Fig. 1, and tuples tq; and tg from StreamA. t41 is first routed to join with tuples
from StreamB in STeM B. Then resulting tuple t;1p1 is routed to join with tuples from StreamC in STeM C. While tg is
instead first routed to join with tuples from StreamC in STeM C. STeM C must be able to efficiently locate tuples from
StreamC using different search criteria. In particular, for tuple ts only the join attributes between StreamA and StreamC are
used, i.e., search on attribute A2. While for tuple t;1p; the combined join attributes of StreamA and StreamB and StreamC
are used, i.e., search on both attributes A2 and A3.

2.2. State-of-the-art indexing in AMR systems

The main work on improving the precision of indices in AMRs is by Raman et al. [5]. They proposed to create a state
for each stream to store its incoming tuples (i.e., akin to traditional database tables) and multiple hash indices for each
state. Each hash index of the join operator (i.e.,, STeM) optimizes a specific data access on a state. We now illustrate the
inefficiencies of such indices.

Example. Consider a DSMS that tracks location of packages via sensors. Each sensor propagates 3 attributes: priority
code (A1), package id (A2), and location Id (A3). The state storing the sensor data has 3 hash indices, ie., A1, A1 & A2,
and A2 & A3 (Fig. 2). To insert tuple t;, first t; is stored in the state. Then hash keys for t;.A1, t;.A1&t;.A3, and t;.A2 &t;.A3
are created, linked to t;, and stored.
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Select  <agg-func-list>

From <stream-name>

Where  <preds>

Window <window-length> : default-window-length

Select  A.* B.*, C.*

From StreamA A, StreamB B, StreamC C

Where A.Al=B.A2andA.A3=C.A3and B.A3=C. A4
Window 10000

Fig. 3. SPJ query template and example.
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Fig. 4. AMR of example.

Consider search request srq that looks for packages with priority code A1 = 2012 and location id A3 = ‘47". To execute
srq, first, which hash index is most suitable to process sry is located. The most suitable index is the hash index that supports
the largest number of attributes in sr; and contains no attributes not in sri. Next a lookup is performed using the most
suitable index, e.g., Al.

Consider srp that looks for packages where location id A3 = ‘47’. No suitable index exists for sr,. The entire state is
scanned. To improve the search time of sry requires the creation of a new hash index to support attribute A3. However this
adds additional memory and maintenance costs to store tuples in the state.

Unfortunately to support diverse criteria as motivated above requires: 1) a possibly large number of hash indices, 2) high
memory overhead to support multiple links for each stored tuple, and 3) considerable maintenance costs to create and
delete multiple hash indices. Our experimental study (Section 9) confirms these inefficiencies and demonstrates that our
proposed solution successfully overcomes these shortcomings.

3. Preliminaries

Query model. We consider SP] (select-project-join) queries processed under a suffix window (Fig. 3). A suffix window indi-
cates the length of the data history to be queried via sliding windows. Our explanation uses one SP] query. Yet, our AMRI
equally applies to multiple SP] queries.

A state is instantiated for each stream in the FROM clause, e.g., a state for StreamA, StreamB, and StreamC (Fig. 4 is an
AMR for the query above). Each state is associated with a unary join STeM operator [5] that supports insertion and deletion
of tuples, and locating tuples based on join predicates.

Join operator. The original AMR system, Eddy [3], utilized ripple join operators in which the intermediate results produced
are stored in the operators’ state. [20] improved query execution time of AMR systems by introducing the STAIRS operator
which is an extension to the ripple join operator. Beyond the standard join processing, the STAIRS operator allows the
system to dynamically undo some of the query processing performed on blocked tuples, i.e, such tuples are waiting upon
intermediate results from other streams. This allows the STAIRS operator to unblock such tuples.

Both the ripple join and STAIRS operators have the burden of maintaining the probe functionality of tuples from the
same stream in multiple operators [5]. In addition, their route selection suffers as the router has no knowledge about what
is affecting an operator’s selectivity. Namely, it cannot be determined if the probes that do or do not utilize the cached
results are more selective [5].

To address this, Rama et al. improved optimization capabilities by extending routing flexibility through their STeM oper-
ator [5]. A STeM is a unary join operator dedicated to the storage and probing of requests containing tuples from one base
stream. Given the promise of this strategy, we adopt SteMs as our join operator, though other types of joins could equally
be used.

A join predicate is expressed in the query WHERE clause composed of 1) an attribute stream reference, 2) a join expres-
sion (=, <, > >, <), and 3) another attribute stream reference (e.g., A.A1 = B.A2). The join attribute set JAS for a state (i.e.,
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Fig. 5. State using a bit address index.

say from StreamA) is the set of all attributes specified in the join predicates (i.e., for StreamA JAS = {A1, A3}). Each STeM
can search for tuples stored in its state based upon any combination of attributes in JAS. For example, the combinations of
attributes in JAS for StreamA are A1, A3, and A1 & A3 combined. An access pattern (ap) is an attribute combination used
to specify search criteria. It is denoted by a vector whose size equals the cardinality of the JAS. Each vector position rep-
resents one join attribute. Join attributes used to search are represented by the name of the attribute. Those not used are
represented by the wild card symbol .

Example. Reconsider the state of StreamA where JAS = {A1, A3}. (A1, A3) is an ap where all join attributes are used to
search. While (A1, %) is an ap only using join attribute A1, and (*,*) is an ap using no join attributes (i.e., a full scan).

4. Adaptive multi-route index
4.1. Physical index design

We now explain our proposal to employ a versatile yet compact bit-address index as the foundation of our solution [19].
Our bit-address index incorporates an index key map (a.k.a. the index configuration IC) or blueprint to the memory location
where tuples are stored. Each IC of B bits supports 28 buckets to store tuples. The bucket in which tuple t; is stored is
found by using the IC to map t;’s attribute values to a specific bucket. IC delineates for each join attribute the number of
bits (possibly none) used in the mapping. No index links are ever created as the IC derived for each tuple is never stored.
This significantly reduces the memory and CPU overhead.

Example. Reconsider the example in Section 2.2. Tuple t;, a package record, is inserted into bit-address index BI in Fig. 5
where the IC has 10 bits (5 bits for attribute A1, 2 bits for A2, and 3 bits for A3). First the bucket id for t; is generated by
mapping the values for t;.A1, t;.A2, and t;.A3, which are 00111, 11, and 010 respectively. Then these values are combined
to form the bucket id, i.e., 0011111010 or bucket 250. Finally, t; is stored in bucket 250. The IC generated is not stored.
Thus, no memory or CPU time is required to support index links. In contrast, the hash index approach [5] (Section 2.2)
utilizes both memory and CPU time to create keys for each hash index created. Thus, the bit-address index satisfies the low
memory and CPU requirement.

As we will now show, adapting a bit-address index requires on average less CPU time than the hash index approach. To
adapt tuples in the state from index BI; to Bl, requires the relocation of stored tuples to the buckets defined by Bl, and
deletion of BI;’s memory. While the traditional hash index approach would create and delete multiple hash keys for each
stored tuple.

Consider the search performance using the BI in Fig. 5 versus the hash indices in Fig. 2. Search request srq is looking
for all packages with priority code = 2012 and location id = ‘47’ (Fig. 5). First the bucket ids to be searched are found
by mapping the attributes specified sr; (i.e., A1 =2012 and A3 =‘47" or 00111 and 010) and the attributes not specified
in sry (i.e., all possible biit values for A2 or 00 to 11). Then the possible bits are combined to identify the buckets (i.e.,
0011100010, 0011101010, 0011110010, and 0011111010 or buckets 226, 234, 242, and 250). Finally a scan is performed
across all identified bucket(s). If the search is narrow and precise (i.e., the access pattern specifies all join attributes), then
only one bucket is searched. If the search is wide (i.e., the access pattern contains wild card symbols) then several buckets
are searched. On average, a good index configuration limits the number of buckets examined for the majority of search
requests. Clearly, a single BI can serve multiple diverse access patterns and require less maintenance overhead than multiple
hash keys. Thus, the bit-address index satisfies the diverse access pattern requirement (Section 1.3).
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Table 1
Notations.

Notation =~ Meaning

ap a search access pattern

Ad # of incoming tuples from a stream received within a time unit
Ar # of search requests received within a time unit
Ch average cost for computing a hash function

Ce average cost for conducting a value comparison
Cyq average cost to delete a value from a bucket

Na # of indexed attributes

Nap,ap # of indexed attributes specified in ap

Wap window length (in # of time units) of ap

Bap # of bits assigned to all attr. specified in ap

Fap frequency of ap

AP the set of access patterns in workload D

The configuration of the index key map (i.e., the assignment of which attribute data values map to which bits) influences
the number of buckets searched. The optimal index key map is configured so that there exists a relatively even distribution
of stored tuples in each bucket. This requires the analysis of the distributions of the data content of each index attribute.

4.2. Multiple index configurations

In AMR systems, the query paths used to process tuples constantly evolve. As they evolve, the system will contain
some partially serviced tuples already in process. These partially serviced tuples may favor different query paths than
new incoming tuples. To minimize response time, states must efficiently process search requests generated by all tuples.
To support this search request diversity, we propose to allow states to maintain multiple index configurations. Namely,
a distinct index configuration for different subsets of tuples.

Tuple t; will join with stored tuples that are within the query window of t;. For this, we propose to time-partition stored
tuples by the windows of tuples that they produce results for. Each partition of stored tuples is distinctly indexed to support
efficient processing of the search requests that they provide results for, e.g., indexed to support the query paths of older
tuples.

Partition design. Each index configuration chosen is the most efficient for the query windows into which the stored tuple(s)
under it fall. Stored tuples are broken into time slices referred to as partitions P. A partition is a portion of incoming tuples
of constant length |P|, e.g., based upon tuple count.

Each partition is assigned a partition number. The current partition number is equal to Ll%dlj where A4 is equal to the
number of incoming tuples received thus far from a stream. A query window QW is composed of a number of partitions
denoted by PW, where PW = [%1. Each configuration is stored in a hash table via a partition number key. To reduce
overhead, consecutive partitions that use the same configuration are stored in the same BI.

Processing costs using partitions. We now outline the costs of insertion, search, and deletion of tuples using AMRI.

Insertion: To store tuple t; in a state the proper bucket within the latest partition must be located. The complexity of
insertion is constant, namely, O(Cpgsh,; + Cinserr). Notations are in Table 1.

Search: Given search request srq, first the set of partitions in the query window relevant to srq referred to as QW(sry) are
determined. Next all bit-address indices in the partitions of QW(sr1) referred to as Blgwsr,) are located. Finally all tuples
that match srq stored in buckets located by the indices in Blow(sr;) are found. In the worst case a unique index exists for
each partition. Then the complexity of search is O(|Blow(sr;)|(Chash,sr; + Csearch)). In the best case all partitions share the
same index and the complexity of search is simply O(Chgsh,sr, + Csearch)-

Deletion: AMR systems do not force a strict FIFO processing order by tuple arrival time so to allow tuples to travel through
the AMR concurrently along their respective query paths [3]. This disorder causes deletion to be more complicated since
a stored tuple should only be removed when no search request exists that could potentially still join with it. To assure
correctness inspite of this disorder, the router tracks the number of search tuples by partition number and the earliest
partition number of all search tuples, denoted as EPN. Only tuples from partitions older than the oldest partition in the
query window of EPN are removed. The complexity of deletion is O(Npr(PW)Cq) where Npg = # of partitions to remove and
PW = # of tuples in a partition.

As seen above partitioning is a well established method in streaming to reduce cost of state maintenance by performing
some operations (e.g., purging) at a batch rather than individual tuple level. Similarly, we hence use partitioning here in
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AMRI although it is not a key factor in the overhead of AMRI. Partitions store a portion of the incoming tuples from a stream,
i.e,, the partitioning size is set to be a portion of the window size. Each partition will produce results for a particular subset
of tuples bounded by arrival time or tuple count. Partitioning reduces deletion overhead. When it is determined that no
more tuples that will join with a partition are still processing in the system, the entire partition worth of tuples can simply
be deleted. In contrast, non-partitioned states must periodically search through the state and compare individual tuples to
the current window and accordingly delete. Hence partitions support cheaper deletions as they allow batch comparisons
and deletions.

Compared to non-partitioned indices there is a minimal additional search overhead for partitioned indices, namely,
looking up the index configuration used by each partition. However, adjacent partitions use the same index if they share
the same index configuration. Thus in the worst case (i.e., where a unique index configuration exists for each partition) the
search requires a look up of the index configuration of each partition. In the best case, the search simply requires a single
index configuration look up.

5. Index assessment

The assessment component maintains compact statistics used to locate the optimal index configuration for each state, i.e.,
the index configuration with the lowest index configuration dependent costs Cp.

5.1. Index configuration dependent costs Cp

The quality of an index configuration IC depends upon the estimated unit processing costs for IC [21] which is the com-
bined maintenance and search costs [19]. The maintenance costs are the sum of the cost to insert and delete tuples in a
state and to compute bucket ids (Cinsert + Cdelete + Chash,1) (Table 1). The search costs are the sum of the cost to compute
bucket ids and search for tuples stored in the state (Cpgsn.sg + Csearch). Both Cinserr and Cgepere are independent of which IC is
evaluated. Henceforth when comparing index configurations we only consider the index configuration dependent costs Cp
(Eq. (1)) [19]. The insertion cost to compute bucket id Cpqsp ; is equal to the product of the number of incoming tuples, the
number of attributes, and the cost to compute the key for one attribute or AgN4Cj. The search cost to compute bucket ids
Chash,sr is equal to the product of the number of incoming search requests and the sum of the cost to compute the key for
the attributes in AP or A, ZaPeAP Nap,apCh. The search cost Cgeqrep is equal to the product of the number of incoming search

AdWapFap
“ R Ce

requests and the estimated number of tuples scanned or Ar 3 ;cap
CD = Chash,l + Chash,SR + Csearch

Cp =AgNaCp + Ar Z Nap,apCh + Ar Z
apeAP apeAP

(1)

5.2. Access pattern statistics

To assess ICs requires the frequency statistics of each access pattern (Fgp). Recall that an access pattern does not corre-
spond to raw stream data tuples but rather a search criteria (Section 3).

Definition 1. The frequency of access pattern ap in a workload D arising during a given time duration (namely, all incoming
and intermediate tuples processed over that time duration), denoted as Fgp, is Fqp = \D—prl where Ngp corresponds to the
cumulative number of times access pattern ap occurs in D and |Dgp| is the total number of access patterns in D.

The number of possible access patterns is equal to the number of combinations of join attributes for a state. If there

are Njq join attributes then the number of possible access patterns is ), (Nkf“) or 2Nia — 1, Thus the number of possible
access patterns is exponential in the number of join attributes.

5.3. Self reliant index assessment SRIA

5.3.1. Basic SRIA

We first sketch Self Reliant Index Assessment or SRIA. SRIA captures the frequency of access patterns for a state in a hash
table referred to as the SRIA table. Access pattern statistics collected in the SRIA table are independent of each other (i.e.,
self reliant).

To allow quick direct referencing to every access pattern ap in the SRIA table, each ap is mapped to a unique binary
representation B(ap). A1l indicates that a join attribute is used to search, while a 0 indicates that a join attribute is not.
Consider a state with 3 join attributes {A1, A2, A3}. If ap; is searching using only attribute A (i.e., ap; = (A1, %, *)) then
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Table 2

Compact SRIA estimation example.
ap Fap ap Fap
(A1, %,%) 4% (A1, A2, x) 4%
(%, A2, *) 10% (A1, %, A3) 16%
(x, *, A3) 10% (x, A2, A3) 10%

(A1,A2,A3)  46%

B(ap;) = 100 which represents index number 4. If ap, is searching using attributes A2 and A3 (i.e., ap; = (%, A2, A3)) then
B(ap;) = 011 which represents index number 3.

For each incoming access pattern ap the binary representation B(ap) is found. If the access pattern statistic exists then
Nygp is incremented by 1. Otherwise the new access pattern ap is added with Ny, initialized to 1.

Definition 2. Given a state S;, the SRIA algorithm outputs the set of all frequency access patterns collected for S;.

5.3.2. Compact SRIA: access pattern reduction

The large number of possible access patterns that is exponential in the number of join attributes Nj, (Section 5.2) can
cause potential memory limitations. We now explore a frequency access pattern reduction method extension to SRIA referred
to as Compact SRIA or CSRIA is modeled after the heavy hitter algorithm proposed by Manku and Motwani [17]. Unlike [17],
we compact and collect statistics on search request frequencies instead of raw data tuples. Informally, during assessment
CSRIA periodically removes any access pattern statistic whose frequency falls below a preset error rate €. Upon completion
of assessment, CSRIA returns all access pattern statistics whose frequencies are above a preset threshold 6.

Definition 3. Given a state S;, SRIA access patterns for S¢, threshold 6, maximum error in the Fg, collected §, and error
rate €, the CSRIA algorithm outputs the set of frequency access patterns Q such that: Yap € Q: (Fgp +6) > (0 —€) and
Vap € (Ngp — Q): (Fgp +8) < (0 —¢€).

CSRIA evaluates incoming access patterns in segments. Each segment contains [%1 search requests. Segments are asso-
ciated with an id (sjy) that represents the current required number of search requests for an access pattern to meet the
preset error rate threshold. The current segment id is equal to |€ % A, | where A, is equal to the number of search requests
received during assessment thus far. To ensure that certain access pattern statistics are not deleted too early, the current
maximum frequency error § is stored with each access pattern statistic. The maximum frequency error § represents the
minimum number of requests that should occur in order for frequency access pattern Fqp to be above the preset error rate
threshold.

CSRIA is composed of three phases, insertion (creating access pattern statistics), compression (removing access pattern
statistics), and final results (finding all access pattern statistics whose frequency meets the threshold). Insertion and com-
pression occur during the assessment phase. During assessment, creating access pattern statistics from the access patterns
of incoming search requests (insertion) proceeds as follows: First, the binary representation B(ap) is computed. Second, if
the access pattern statistic exists then Ngp is increased by 1. Otherwise a new access pattern statistic is added with Ngp
equal to 1 and the maximum frequency error § equal to one less than the current required number of search requests
for access pattern ap to meet the preset error rate threshold, i.e., s — 1. Also during assessment, compression is executed
whenever a segment worth of search requests are received. Compression removes any access pattern from the SRIA table
whose frequency is below the preset error threshold, i.e., Ngp 4+ 6 < sj4. At the end of assessment, the final result produced
corresponds to all access patterns whose Fg, + 8 is greater than the preset threshold 6 in accordance with the maximum
frequency error ¢, ie., Fop+86 >0 — €.

CSRIA benefits. 1) It guarantees to find any access pattern whose frequency is greater than threshold 6. 2) The maximum

ja—1 (Nja—l

memory required is limited to %log(e Y oo - )) access patterns where there are Nj, join attributes [22].

5.4. Dependent index assessment DIA

Example. As we will now demonstrate, CSRIA misses an opportunity for finding the optimal index configuration. CSRIA,
while efficient, does not utilize the relationships between access patterns. This decreases the opportunity to find the optimal
index configuration. Consider a state with 3 join attributes (SRIA Table 2) and a 4 bit BI. If  is 5% and € is .1%, then CSRIA
will delete access patterns (A1, %, %) and (A1, A2, x) even though both would benefit from the index configuration (A1, x*, ).
Furthermore the combined frequency of (A1, %, %) and (A1, A2, %) is 8%, i.e., greater than 6. The index configuration found
during selection has 1 bit assigned to the A2 attribute and 3 bits assigned to the A3 attribute. Whereas the optimal index
configuration has 1 bit assigned to A1 and A2 attributes each and 2 bits assigned to the A3 attribute.
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Fig. 6. DIA lattice for state with 4 join attributes.

5.4.1. Basic DIA

We now explore how the dependent access pattern relationships affect assessment. We first outline how a search
request is executed based on the index configuration of a state. Then we describe how we exploit these relationships in
Dependent Index Assessment or DIA.

The efficiency of executing a search request with access pattern ap; depends upon the index configuration of the state.
An index which only contains a subset or even all of the join attributes in ap; will more efficiently support ap; than an
index that supports none of the join attributes in ap;. Consider a state with JAS = {A1, A2, A3, A4} and a search request
with ap = (A1, A2, x, *):

Worst case. IC consists of no attributes in ap (e.g., IC consists of attributes A3 and A4). As IC and ap have no common
attributes, no buckets are eliminated. Thus a full scan is required (i.e, a comparison of all stored tuples).

Slightly better case. IC consists of some attributes in ap and some not in ap (e.g., IC consists of attributes A1, A2, and A3).
Each attribute in IC that is not in ap creates the search wild card condition (Section 4.1). If n is the number of bits assigned
to the attributes not in ap then 2" buckets must be compared.

Much better case. The attributes in IC are a subset of the attributes in ap (e.g., IC consists of attribute A1). In this case,
only a single bucket must be searched. The bucket will contain all tuples relevant to ap as no wild card condition exists.
However, not every tuple is guaranteed to satisfy ap. Overall, the number of tuples compared is likely smaller than the cases
above.

Optimal case. The attributes in the IC exactly match the attributes in ap (e.g., IC consists of attributes A1 and A2). Since
all attributes in IC are specified in ap, a single bucket will be searched. Further, all tuples in the bucket will correspond to
matches. In other words, this results in the smallest number of tuples compared to all the cases above.

Definition 4. An index based upon access pattern ap; provides a search benefit to a search request utilizing access pat-
tern ap,, denoted as ap; < ap,, if Ya € ap; — a € ap, where a is an attribute.

The search benefit relationships organize access patterns into a lattice which we refer to as the DIA lattice (Fig. 6). Each
DIA lattice node emulates an access pattern. The DIA lattice starts with the access pattern with no join attributes (top node).
At each DIA lattice level, nodes are formed by taking each node in the prior level and adding one join attribute not already
in it. This process continues until all possible join attributes are included in the access pattern (bottom node). Each node is
linked via an edge to the nodes it provides a search benefit to in the level directly below it.

Dependent Index Assessment DIA stores the assessment values in a DIA lattice to retain the dependent search benefit
relationships between access patterns. DIA builds the DIA lattice in a top-down manner at runtime. Each access pattern
node nd in the partial DIA lattice consists of the access pattern it represents, namely nd.ap, and the frequency of nd.ap
requests, or nd.Fgp.

For each search request, if the access pattern node already exists in the DIA lattice then the corresponding frequency
nd.Fqp is incremented by 1. Otherwise, a new access pattern node is created. To enable quick direct referencing to each
node, nodes are mapped to unique binary numbers as outlined above for SRIA. As such, physically each DIA node is stored
in a SRIA table.

5.4.2. Compact DIA: access pattern compression

The large number of possible access patterns in DIA (Section 5.2) can cause memory limitations. We now explore an
access pattern reduction method extension to DIA modeled after a hierarchical heavy hitter algorithm [18], namely Compact
DIA, or CDIA. In our context, we utilize the search benefit relationship to combine access pattern statistics rather than
deleting them. The key idea is for CDIA to during assessment periodically combine the statistics of any access pattern ap
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Fig. 7. CDIA example.

whose frequency falls below a preset error rate € with any access pattern node that provides search benefits to ap using
the DIA lattice. At the end of assessment, CDIA returns all access pattern statistics whose frequencies are above preset
threshold 6.

Definition 5. Given a state S, DIA access patterns, threshold 6, error rate ¢, the set of all possible access patterns of S;
denoted as Pap, the CDIA algorithm outputs the set of frequency access patterns Q such that: Yap e Q: F*gp — € < Fgp <
F*4p where (F*qp = (Y(k € Pap)((ap < k) and (}_ Fx <0)))).

The CDIA approach provides three methods, namely, insertion (creating access pattern statistics), compression (combining
access pattern statistics), and final results (finding all access pattern statistics that meet the threshold). The insert method is
composed of multiple steps. First, the binary representation of the access pattern B(ap) is computed. If an access pattern
node exists for ap, then its frequency nd.Fg is increased by 1. Otherwise, a new access pattern node is added for ap with
nd.Fgp equal to 1 and maximum error in the frequency § set to the minimum error rate thus far, or sj; — 1. After collecting
a segment full of search requests, compression evaluates the leaf nodes of the DIA lattice. A leaf node is any access pattern
node in the DIA lattice that does not provide a search benefit to any other node (i.e., no access pattern node below it has
a count > 0). Compression proceeds as follows. For each leaf node in the DIA lattice, if the frequency of the access pattern
nd.Fgp plus the maximum error in the frequency § is less than the current segment id and a parent of the leaf node exists,
then the access pattern count of the leaf node is added to the access pattern count of the parent. Otherwise a new parent
node is created with nd.Fqp equal to the access pattern count of the leaf node and maximum error in the frequency § equal
to sjg — 1. Finally, the leaf node is deleted.

During the final results step, any access pattern whose frequency is greater than threshold 6 is returned as described
below. For each node nd in the DIA lattice starting from the leaf nodes, first the frequency of the access pattern nd.Fg, is
computed. If nd.Fg is less than threshold 6, then the count of the access pattern node is added to the parent. Otherwise,
the access pattern node is added to the result set Q.

CDIA combination methods. Several strategies can combine the frequency of a child access pattern node nd. with a parent
access pattern node nd,, that provides search benefits to it [23]. One method, random combination, randomly picks a parent
node. Another method, highest count combination, adds the child’s frequency to the parent with the highest frequency thus
far. The intuition is that the parent node with the largest frequency during assessment has a greater chance of being larger
than the preset threshold & when the final results are found (i.e., at the end of assessment). Our experiments explore
both.

CDIA benefits. 1) It guarantees to find access patterns whose frequency is greater than 6. 2) It only stores g log(e Z;\i’:” (; ! (Nf;;]))
access patterns where h is the number of levels in the DIA lattice [18]. 3) It reduces the number of access patterns stored
while retaining the statistics of removed patterns.

Example. Reconsider the above example with a state containing 3 join attributes, a 4 bit BI, 6 is 5%, and € is .1% (Fig. 7).
The CDIA approach using the random combination method combines the frequency of (A1, A2, ) into (A1, %, *). Selection
would find the optimal index configuration.

6. Bounds on statistics reductions

Index selection finds the best IC for each state by comparing the dependent costs Cp (Eq. (1)) of each possible IC and
returns the IC with the lowest combined Cp. The “optimal” division of available bits among the states that minimizes the
combined Cp must also be considered. The bit division problem given the constraint of minimizing combined Cp across all
states has been shown to be equivalent to the multiple-choice knapsack problem (MCKP) [24], a NP-hard problem. Therefore
we here consider the problem of locating the optimal IC for each state where each state is allocated a specific number of
bits. Henceforth index selection refers to the problem of finding the IC with the lowest combined Cp among all possible ICs
given B bits.
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6.1. Cost calculation reductions

To find the best IC, the index configuration dependent cost Cp of every possible combination of JAS attributes and B bits

must be evaluated. Given N join attributes and B bits, each index configuration with < Min(N, B) attributes is explored. For
each IC with bits assigned to k of the N join attributes there are (f_ ] ) possible combinations of distributing B bits among
the k attributes. Hence the complexity of the search space is: ZMI"(N B )( p )(ﬁ_l1 )-

As the size of N or B increases, the search space grows exponentially.

Our AMRI reduces the cost of index selection by eliminating some access frequent statistics. The EPrune algorithm
reduces the cost of index selection by eliminating some attributes where there is no benefit to create an index on the
attribute. Both use online current statistics rather than compile-time training data to make decisions at runtime.

Before searching over all possible index configurations, the EPrune algorithm [19] applies a benefit function (Eq. (2))
to eliminate any join attributes from the index configuration whose frequency is so low that the overhead for indexing it
exceeds the probe cost reduction. If attribute Ay is indexed and assigned N bits, the maximum search cost reduction is
Ar ZGPGPA AgWapFap(1 — zl,\,)CC where P, denotes the set of access patterns with Ay specified. The additional cost to index
attribute Ay is (ZapepA Fapir + 1q)Cp. To determine the maximum benefit of indexing attribute Ay or MB(Ay), we compare
the cost to hash attribute Ay to the maximum search cost reduction if attribute Ay is indexed (Eq. (2)). EPrune searches
over all possible join attributes and prunes any join attribute Ay where the maximum benefit of indexing Ay is negative.

1
MB(A) =) ) AdwapFap(l — 2—N>cc = Y (Faphr +2a)Ch (2)

apeAP apeAP

EPrune guarantees to find the optimal IC and quickly locates it when the number of join attribute statistics N is
small [19]. Complementary to this, our CSRIA and CDIA methods assist in minimizing the search space by reducing the
number of access pattern statistics. This increases the number of possible attributes eliminated by EPrune.

The number of cost calculations to evaluate Cp is driven by the number of access pattern statistics (Section 5.2). A large
number of access pattern statistics causes a costly large number of cost calculations for each possible IC.

Lemma 1. Eliminating one access pattern statistic per the CSRIA and CDIA methods reduces the number of cost calculations performed

by S0 () (27),

6.2. Statistic reductions

CSRIA and CDIA reduce the number of access patterns statistics with the goal of reducing the required memory for
assessment and CPU cycles for selection. However, such reductions can influence the quality of the IC found.

Lemma 2. The affect of removing an access pattern on Cp is bounded in proportion to the preset threshold 6 and error rate €.

Informal proof. An access pattern statistic Fqp can have one of the following affects on a given IC’s dependent cost Cp
(Eq. (1)):

If each attribute in the access pattern ap is in the IC and vice versa, then all possible bits are used to search (i.e., no wild
cards). The portion of Cp that the frequency Fqp of ap contributes to is ArMCC. This is the smallest contribution that
Fgp can have on a Cp.

If no attributes in ap are in IC then a complete scan and comparison of all stored tuples is required. The portion of Cp
that Fgp contributes to is ArAgWapFapCe. This is the largest contribution that Fgp can have on a Cp.

In the worst case removing an access pattern statistic Fqp from CSRIA removes the largest contribution that a particular
Fgp can have, or ArAgWgpFgpCe, from each possible Cp calculation. Thus any access pattern whose frequency is < (0 —¢€) is
guaranteed to not reduce any Cp by more than AAgWgp6Ce.

In the worst case removing an access pattern statistic Fqp from CDIA changes the contribution that Fgp has on a Cp from

the smallest contribution possible ArMCC to the largest contribution possible ArAqWapFapCc. The potential difference

in Cp is ArAqg WapCC(z—B — Fgp). Thus any access pattern statistics Fqp where the value of (g —Fgp) is < (0 —¢) is guaranteed
not to increase any Cp by more than A,AqWgp6Ce. O

7. Scheduling the tuning process

We now introduce four methods that schedule index tuning.

Continuous Index Tuning collects statistics continuously on each state for a fixed period of time. Upon completion of the
evaluation window, index selection is executed and assessment is restarted. This method is the simplest to implement and
carries no overhead to determine when to initiate index tuning. However when search access patterns do not change, it
adds significant assessment overhead even though no new index configuration is required.
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Periodic Index Tuning is adapted from index tuning in traditional database systems [25]. At periodic intervals statistics
are collected and used to locate the best index configuration. This method is also simple to implement and carries a light
overhead to determine when to initiate index tuning. The downfall of this method is when the search access patterns are
rapidly changing, it will not identify changes in a state that arise when the state is not being assessed.

Triggered Index Tuning is based upon observed routing changes. It initiates index assessment on states with observed
significant routing shifts. In this method, over a fixed period of time the number of search requests processed by each
state denoted by A, is tracked and compared. Then index assessment is ran on the state with the most significant change.
A significant change in A, is measured by computing the degree of difference between the current A, for a given state S;
and the prior A, for S;. This method is more alert than the periodic index tuning method. It can rapidly identify significant
changes in A; for a given state. The main drawback of this strategy is that states that never have significant changes in A;
may never be assessed.

Hybrid Index Tuning employs both periodic and triggered methods. It keeps an ordered list of the states to assessed. When
a state has been assessed, the state is moved to the bottom of the assessment list. The advantage of the hybrid method is
that it allows the system to catch significant changes in individual states as they occur while ensuring that each state is still
periodically assessed.

8. Index migration

When a new “best” index configuration is located, index migration considers whether or not to re-index the current
stored tuples to this new index configuration. We now present three alternative migration methods.

8.1. All or nothing

All migration method re-indexes all stored tuples to the new “best” index configuration, and removes the old index
configuration(s). The result is that each state supports a single common index configuration at all times.

Nothing migration method re-indexes no stored tuples (i.e., all stored tuples keep their index configurations). The result
of this approach is that states support multiple distinct index configurations. Each tuple locates stored tuples using the
time-partitioned indices within their query window (Section 4.2).

Analysis: Is a single (i.e., all migration) better than multiple distinct index configurations (i.e., nothing migration)? To
answer this we explore the overhead of migration. Both approaches carry no overhead to evaluate which time-partition
indices to migrate. The nothing migration method carries no cost to migrate any stored tuples. While the all migration
method carries the cost to migrate all stored tuples. The migration cost of a tuple is the sum of the costs to compute the
bucket id of the new index configuration (i.e., new memory location), and to insert the tuple into the new memory location
(Cinsert + Chash.1) (Section 5). The deletion cost to remove a tuple is the sum of the costs to compute the memory location
of the tuple using the old index configuration and to delete the tuple (Cpgsn,sr + Cdelere). The total migration cost of the all
migration method is ) csare (Cinsert + Chash, 1) + (Cnash,sr + Caelete) and the nothing cost is 0.

B (IC, BIC) = C5(IC) — (C5(BIC) + Cm (IC, BIC))
Cs (IC) = Chash,SR + Cprobe
Cm (IC, BIC) = Z ((Chash,l + Cinsert) + (Chash,SR + Cdelete)) (3)

testate

In order for the migration cost to be worthwhile there must be a benefit in migrating to the new IC. Given the index
configuration of a state IC, the benefit of migrating to the new “best” index configuration BIC denoted as B, (IC, BIC) is the
difference between the search costs using IC and migration and search cost using BIC (Eq. (3)). If B, (IC, BIC) is greater than
0 then there is a benefit in migrating IC to BIC.

In order for the all migration method to have a lower overall processing cost than nothing migration method, the search
cost from old inprocess tuples using the new “best” index configuration plus the migration cost must be less than the search
cost from old inprocess tuples using their current index configuration, i.e., (Cs(BIC) 4+ Cpn (IC, BIC)) < Cs(IC). If this is not the
case, it is more cost effective to search for old tuples using their current index configuration and utilize the new “best”
index for only new incoming tuples.

8.2. Partial migration

Now the question arises if there is there a benefit to migrate only some ICs by precisely determining the benefit of
migrating each IC. Partial index migration supports multiple index configurations, and selectively migrates individual index
configurations based upon the estimated future workload of inprocess tuples. We estimate the future workload of each
partition by tracking for each partition the number of inprocess tuples by query window (Section 4.2). For each time sliced
index configuration in the state, the benefit of migration B, (IC, CIC) using the estimated number of old inprocess tuples
served by the given partition is evaluated. That is, when evaluating Cs(IC) and Cs(BIC) the estimated number of tuples
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received within a time unit A, is replaced by the number of inprocess tuples within the partition’s query window. Only
stored tuples from partitions for which there is a benefit in migrating are migrated.

The partial migration method adds the following additional costs to processing: 1) the cost to evaluate each partition
whenever a new index configuration is selected, and 2) the cost to track the estimated future workload of old inprocess
tuples. Thus in order for the partial migration method to have a lower overall processing cost than nothing migration, the
search cost from old inprocess tuples using the new “best” index configuration plus the migration cost and the cost to
evaluate the migration needs of each partition must be less than the search cost from old inprocess tuples using the current
index configuration(s).

9. Experimental results
9.1. Experimental setup

Metrics. An effective index configuration will reduce tuple response time which ultimately will improve throughput. Thus
our experiments compare throughput or the cumulative query results produced over a fixed duration.

Our experimental study explores.

1) Which combination of our proposed index assessment, scheduling, and migration methods is the best at improving the
throughput?

2) Is AMRI better than state-of-art approaches at maximizing throughput?

3) How does varying the number of possible query paths affect the throughput of AMRI versus state-of-art approaches?

Synthetic data sets. To test the effectiveness of our methods under conditions where adaptive indices are required, we
created synthetic data that deliberately causes intermittent fluctuations in system statistics. In particular, we periodically
vary the selectivities of joining each stream to the other streams. More precisely the data content of every 5000 incoming
tuples from stream S; are adjusted so that a different order of STeM operators is the optimal for them. This may cause the
router to use new query paths which may lead to index configuration changes.

Real data sets. To demonstrate that AMRI is a viable approach for improving throughput of AMR systems we also test using
real data. In particular, we use real data collected from 54 sensors deployed in the Intel Berkeley Research lab between
February 28th and April 5th, 2004 (http://berkeley.intel-research.net/labdata/). We partitioned this dataset by sensor in
close proximity to each other into several streams. The sensor readings are sent in generation order, as they would have
been were the tuples submitted in real-time.

In all approaches, the router periodically sends a few tuples along suboptimal routes to update statistics. The access
patterns generated by such tuples have low frequencies. They also have little influence on the final index structure selected.
However, as shown in Section 6, they can add additional overhead during index selection. The overhead of these suboptimal
searches is included in our experimental results.

Experimental setup/query. All experiments are implemented in CAPE [26] using Linux machines with AMD 2.6GHz Dual
Core CPUs and 4GB memory. They run a complete join query across 4 data streams. Each stream joins to each of the 3 other
streams via a unique join attribute. Thus each state must efficiently support search requests containing all possible combi-
nations of 3 distinct join attributes, i.e., 7 possible access patterns or {A1, %, x}, {x, A2, %}, {x, %, A3}, {A1, A2, x}, {A1, %, A3},
{*, A2, A3}, {A1, A2, A3}. There are 6 possible query paths for incoming tuples from stream 1, namely, 1) S2— > S3— > §4,
2) S2— > S4— > S3, 3) S3— > S2— > 54, 4) S3— > S4— > S2, 5) S4— > S3— > S2, and 6) S4— > S2— > S3. Similarly
there are also 6 possible query paths for incoming tuples from each of the other streams. In the real data experiments, the
query locates sensor data from 4 streams where the temperature, humidity, and relative location (horizontal distance from
a fixed point) is the same. Such a query is vital to engineers monitoring building environments.

Our results illustrate that even for systems with a few possible access patterns, there already is a significant benefit in
compacting access pattern statistics. Clearly, as the number of possible access patterns increases so does the probability of
access pattern statistics being eliminated and thus making more cost savings possible.

The IC on each state uses 64 bits. The initial index configurations are found by running index selection using statistics
gathered by executing the stream for 15 minutes first to collect quasi-training data. For the state-of-the-art approach, the
initial indices are those found to support the most frequent search access patterns by running the training data approach
above. Unless otherwise specified, all experiments use the synthetic data set described above.

In each experiment, the partition size is 2500 tuples and the sliding window size is 10,000 tuples. Each window is
composed of 4 partitions. Each partition contributes to any search request whose window contains the stored tuples in the
partition (Section 4.2).
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Fig. 8. Alternative tuning methods (maximum error = § = .05, threshold =6 = .1).

9.2. Evaluating alternative tuning methods

We now explore which of our proposed assessment, scheduling, and migration methods is the best at maximizing
throughput.

Index assessment. We first compare the index assessments methods SRIA, CSRIA, DIA, and CDIA using random and highest
count compression. Each method is run using the maximum error § = .05, threshold 6 = .1, and hybrid index selection
where the periodic and triggered evaluation windows are set to 60,000, and 100,000 search requests respectively. Both
CDIA versions (random and highest count compression) outperform DIA, SRIA, and CSRIA (Fig. 8(a)). In fact CDIA using
highest count compression outperforms both DIA and SRIA by 19%, and CSRIA by 30%. This demonstrates the utility of
combining access pattern statistics (i.e., CDIA) at reducing overhead. The results of DIA and SRIA are rather similar. This is
not surprising as they have the same SRIA table format and do not reduce any nodes.

Scheduling method for index tuning. Next, we compare scheduling methods for index tuning namely, Continuous, Periodic,
Triggered, and Hybrid (Section 6). Each uses the CDIA with highest count compression set up outlined above (i.e., the most
effective method). Hybrid outperforms Periodic, Triggered, and Continuous by 65%, 29%, and 18% respectively (Fig. 8(b)). This
shows the utility of combining traditional periodic scheduling with knowledge gained by the router (i.e., Hybrid approach).
Triggered ran out of memory after 20 minutes. In triggered scheduling, states with no significant changes are never assessed.
Thereby such states over time end up having suboptimal index configurations which increases the time to process search
requests and delays the processing of incoming search requests.

Index migration. Next, we study the impact of runtime migration methods (Section 8). Each is run using the Hybrid
scheduling set up outlined above (i.e., the most effective method). Nothing migration (i.e., utilizing multiple time-partitioned
non-migrating index configurations) outperforms both All and Partial migration by 19% (Fig. 8(c)). The overhead of migrating
the current index configuration to a single new common index configuration (i.e., All migration) is greater than the actual
search execution time saved. In contrast to traditional systems that support a single common index configuration for the
entire state, we conclude that states in AMR systems are best served by multiple time-partitioned non-migrating index
configurations. If this were not the case, All migration (i.e., utilizing a single common index configuration) would have out-
performed Nothing migration. Similarly, we also conclude that the overhead to migrate selective index configurations (i.e.,
Partial migration) is greater than the actual search execution time saved.

9.3. State-of-art: number of hash indices
Next, we evaluate the state-of-art AMR indexing approach (i.e., multiple hash indices) [5] by varying the number of

hash indices created on each state from the minimum to maximum number of possible indices, 1 to 7 respectively. Static
non-adapting hash indices (i.e., selecting an optimal static index configuration at compile-time) produced poor results. Thus
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Fig. 9. State-of-art vs AMRI experiments.

instead here we use adaptive hash indices using the nothing migration outlined above and conventional index selection (i.e.,
indices that support the most frequent access patterns).

All experiments ran for less than 12.5 minutes (Fig. 9(a)). In each experiment, the system ran out of memory due to
the CPU and memory overhead (see Section 4.2). For systems with only a few indices a backlog of search requests occurs
over time from the processing delay caused by the large number of complete scans performed. The 7 hash indices solution
produced more throughput than all others.

9.4. AMRI vs state-of-art

We now explore if AMRI is better than state-of-art approaches [5] at maximizing throughput. First, we compare AMRI to
the 7 hash indices solution (i.e., the best state-of-art approach per above) and the state-of-the art static bitmap index. Both
AMRI and the static bitmap index start with the same optimal index configuration. A static bitmap index selects an optimal
static bitmap index at compile-time. It produced poor results in fluctuating environments such as ours. As we can see, the
static bitmap index could not keep up with the search requests and ran out of memory after 15.5 minutes. AMRI is the clear
winner. It produces 75% and 93% more results than the non-adapting bitmap index and the best hash index configuration
respectively (Fig. 9(b)).

Next, we compare AMRI to the state-of-art approaches [5] using the Intel Berkeley Research lab real data set. AMRI
implements CDIA using highest count compression index assessment where the maximum error § =.1, threshold 6§ = .15,
hybrid scheduling, and nothing migration. We again observed very poor results using non-adapting hash indices. Thus, we
also implemented adaptive hash indices as outlined above. AMRI again produces more results than the best hash index
solution (68% more) (Fig. 9(c)). Next we compare AMRI to a non-adapting bitmap index. Both start with the same index
configuration. In this experiment, AMRI produces 15% more results than the static bitmap index. Compared to the synthetic
data, the real data query has a lower selectivity rate. Thus fewer search requests are routed through the system. Hence there
are fewer opportunities for any system to gain a substantial lead.

9.5. Skewing the number of possible query paths

We now explore how varying the number of possible query paths affects the throughput of an AMR using AMRI indices
versus the state-of-art approach. More precisely, we compare AMRI to adaptive hash indices as defined above when varying
the number of possible query paths. Each experiment uses CDIA using highest count compression index assessment where
the maximum error § = .1, threshold # = .15, hybrid scheduling, and nothing migration (i.e., the best index tuning options).
The periodic and triggered evaluation windows are set to 40,000, and 80, 000 search requests respectively. Synthetic data
was formed such that the selectivities of joining one stream to the other streams limits the number of possible query paths
favored by the router. More precisely the data value of every 5000 incoming tuples from stream S; are adjusted so that the
number of different optimal orders of STeM operators is controlled.
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Fig. 10. Skew on the number of query paths experiments.

Constant path. In the Constant experiment (Fig. 10(a)), only 1 query path is optimal for the query duration. In other words,
1 non-adapting query path for each stream is selected by the router. AMRI's overhead was not low enough to keep up
with the 3 static hash indices solution. But AMRI's overhead was low enough to keep up with both the 1 and 5 static hash
indices solutions. However, such a stable non-fluctuating scenario would clearly not be considered a good candidate for an
AMR system as the purpose of AMR is to adapt the query plan to fluctuations. Thus we would not deploy our index tuning
model in an extremely stable system with known statistics.

Single path. In the Single Adapting experiment (Fig. 10(b)) we again consider the case where the router selects a single path
for each stream. However, this time, the single path adapts over time. In this case, our AMRI solution produces 35% more
results than the highest output produced by the conventional adapting hash indexed based approach. Even for one path,
the low overhead of creating and tuning AMRI allows it to produce more results than the state-of-art hash index solutions.
This supports our claim that AMRI improves the throughput of queries in fluctuating environments.

Varying the number of paths. Next we vary the number of possible query paths on each stream. Overall AMRI produces
more results than the highest output produced by the state-of-art AMR adapting indexing approach. How well AMRI per-
formed is related to the degree of the fluctuations in the number of possible query paths used by the router (Figs. 10(c),
10(d), and 10(e)). A system with few fluctuations where 3 streams have 2 possible query paths and 1 stream has 6 possible
query paths AMRI produced 24% more results (Fig. 10(e)). A system with average fluctuations where 2 streams have 2 pos-
sible query paths and 2 streams have 6 possible query paths AMRI produced 43% more results (Fig. 10(d)). A system with
many fluctuations where 1 stream has 2 possible query paths and 3 streams have 6 possible query paths AMRI produced
73% more results (Fig. 10(c)). Clearly in these scenarios, AMRI adapts to systems with higher fluctuations better than the
state-of-art approach.
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9.6. Summary of results

We found that:

1) of our proposed index assessment methods, CDIA using highest count compression was better at improving throughput
than DIA, SRIA, and CSRIA;

2) of our proposed scheduling methods, Hybrid was better at improving throughput than Continuous, Periodic, and Trig-
gered;

3) of our proposed migration methods, None was better at improving throughput than All and Partial. In other words,
given the temporary nature of index usage in the streaming context, rebuilding indices is generally not beneficial;

4) our AMRI, using both synthetic and real data, was better at improving throughput than the best state-of-art and non-
adapting bitmap index solution;

5) our AMRI adapted to systems with heavy route fluctuations better than the best state-of-art solution.

10. Related work

While traditional database systems focus on processing queries over persistent storage, a new area has emerged focusing
on continuous query processing over data streams [27-36]. Since stream data is infinite, new query semantics have been
defined to avoid infinite data pile-up and thus unpredictable latency. Window-semantics for query operators are introduced
to remove expired data from the database state [37], and with it new algorithms [38-41]. Dynamic constraints are also
interleaved in the actual data stream [42,43]. To address system dynamicity, plan optimization and migration for static
databases such as [44,45] are no longer sufficient. Instead online query plan optimization and run-time migration become
critical techniques for maximal adaptivity [33,37].

Most major commercial DBMSs [46-48] determine a query plan at compile-time. This has been shown to lead to opti-
mization coarseness, or not efficiently processing all tuples [49,50]. To combat this, AMR systems at runtime decide for each
incoming tuple which operator to visit next, e.g., Eddy [3,4,7,6], QMesh [51], and CBR [52]. The first AMR system, Eddy, used
a router to route individual tuples through operators [3]. Enhancements in routing policies were proposed in [4,7]. Multi-
query AMR issues were covered by [6]. [53] adds batching to Eddies to reduce the tuple-level routing overhead. QMesh [51]
groups and routes tuples along preselected operator orderings based on data stream characteristics. Content-based routing
(CBR), an extension of Eddies [52], focuses on continuously profiling operators and identifying attributes to partition and
route incoming tuples by.

We borrow the concept of the SteM (a State Module) from [5]. Stem is used with an Eddy to allow flexible adaptation of
join algorithms, access methods, and the join spanning tree. The STAIR operator [54] encapsulates the state typically stored
inside the join operators and exposes it to the Eddy.

Index Tuning in static databases aims to find a set of indexes that maximally benefit a query workload by either selecting
the optimal index configuration off-line [8,9] or online during execution [12-14] (i.e., [12-14] in our original submission).
[12] explores performance index tuning methods that exploit the ordering of statements in the workload of traditional
databases. In particular, they consider the sequence of insertion and update requests as compared to search requests. We
instead seek performance tuning methods for adaptive multi-route streaming databases where we exploit the sequence of
operators that an incoming tuple visits. [13], a demonstration paper, introduced COLT (Continuous On-Line Tuning), a self-
tuning framework that adjusts the quality and quantity of statistics gathered. That is, it reduces the overhead to gather
statistics when the system is performing well, and increases the overhead when it is not. However, unlike our work, they
do not have a bound on the effect that decreasing or increasing the statistics collected has on the quality of the index
configuration found. In other words, their method is simplistic. Our AMRI approach is more sophisticated in that it reduces
the overhead while maintaining the integrity of the index selected (i.e., bounds on the optimality (i.e., quality) of the
index configuration found) within a preset threshold and error rate. [14] introduced an online algorithm that continuously
monitors changes in the workload and data to tune indices in traditional databases. One of the main issues they address
is that given the data is predominately static how to ensure that the single index configuration used does not keep being
switched back and forth. Our problem is very different. Namely, in streaming databases the data will only be stored for a
short duration of time due to the moving time windows over the streams. Thus, the data will only be used to create results
for a subset of the incoming stream that are within the proper query window. Hence, we seek to identify the best index
configuration for subsets of continuous tuples in the incoming streams. That is, we seek to support multiple time-spliced
index configurations that live for short durations.

Indexing in stream contexts has not yet received much attention, possibly due to the dynamic nature of DSMS. [55]
studies methods for indexing a single attribute for stream algebra operators under sliding window-semantics. [19] proposed
the EPrune algorithm for DSMS where the search request workload is known prior to execution. The EPrune algorithm [19]
eliminates any join attributes from being considered during index selection whose frequency is so low that the overhead for
indexing it exceeds the probe cost reduction. We instead tackle the opposite and harder problem, namely, when the search
requests continuously fluctuate and are not known at compile-time. In addition, we explore novel approaches that cover the
index tuning life cycle for AMRs.
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Bit-address indexing, initially designed to index partial match queries on a file database [56], has been applied on
applications ranging from compactly storing very large multidimensional arrays [57] to reducing processing costs of multi-
dimensional queries [58,59]. [19] studied index selection heuristics using a single bit-address index where the search request
workload is known prior to execution. We instead tackle the on-line index tuning problem for AMRs.

Assessment methods for the bit-address index design have not been studied while they are core to our effort. Such
methods utilize stream sampling algorithms. Our work is the first to put forth for the first time the insight that heavy hitter
algorithms [60,61,17], a type of stream sampling, uniquely meets the requirements of AMRs (Section 1).

[60] introduced the first deterministic algorithm for approximating frequency counts, a.k.a. the heavy hitter method. [17]
added the error rate € approximation guarantee. Our CSRIA method is modeled after [17]. However, we do not use raw data
such as [17], but instead focus on the modeling and measuring search requests and their frequencies. Hierarchical heavy
hitter, applying the heavy hitter methodology to hierarchical multidimensional data, was studied in [18,62] to solve network
traffic problems. Our CDIA method is modeled after this hierarchical heavy hitter work. CDIA implements two compression
methods, namely, random combination and highest count combination which are variations of compression methods presented
by [23]. In our context, we customize the compression methods to handle the search benefit relationships between indices
in AMRs. To our knowledge, ours is the first application of heavy hitter and hierarchical heavy hitter algorithms to address
the problem of index tuning in AMRs.

11. Conclusions

AMRs require an index design and on-line tuning that is light weight with respect to both CPU and memory resources
and yet efficiently can support diverse and ever adapting search criteria caused by the adapting query plans in AMRs. It is
challenging to identify query path fluctuations, and to quickly and precisely adjust index configuration(s) to best serve the
new query path(s). To address this problem we developed the Adaptive Multi-Route Index for AMR systems or AMRI. AMRI
employs multiple time-partitioned bitmap indices to serve a workload of diverse access patterns with partially overlapping
query windows. We introduced Compact Dependent Index Assessment which improves query responsiveness by reducing
the selection search time. Hybrid Index Selection implements both standard periodic index selection and triggering index
selection based upon changes in routing. We established the optimality bounds on the quality of the index configuration
found during selection. We also are the first to demonstrate that a state utilizing multiple time-spliced index configurations
significantly improved the throughput of AMR systems.

Our experiments validated that AMRI improves the throughput in dynamic stream environments while keeping the
overhead minimal. In particular, using synthetic data AMRI produced on average 93% more results than the state-of-art
approach. With our real data set AMRI produced on average 68% more results. We also evaluated multiple index scheduling
and migration methods and determined their relative effectiveness.

Acknowledgments

We thank Luping Ding and our WPI peers for feedback, and GAANN and NSF grants: 11S-1018443, 0917017, 0414567, and
0551584 for financial support.

References

[1] D.J. Abadi, et al.,, Aurora: a new model and architecture for data stream management, in: VLDB, 2003, pp. 120-139.
[2] T. Urhan, et al., Cost-based query scrambling for initial delays, in: SIGMOD, 1998, pp. 130-141.
[3] R. Avnur, et al., Eddies: continuously adaptive query processing, in: SIGMOD, 2000, pp. 261-272.
[4] P. Bizarro, et al., Content-based routing: different plans for different data, in: VLDB, 2005, pp. 757-768.
[5] V. Raman, et al., Using state modules for adaptive query processing, in: ICDE, 2003, pp. 353-364.
[6] S. Madden, et al., Continuously adaptive continuous queries over streams, in: SIGMOD, 2002, pp. 49-60.
[7] E. Tian, et al., Tuple routing strategies for distributed eddies, in: VLDB, 2003, pp. 333-344.
[8] S. Agrawal, et al., Automated selection of materialized views and indexes in SQL databases, in: VLDB, 2000, pp. 496-505.
[9] S. Chaudhuri, et al., An efficient cost-driven index selection tool for microsoft SQL server, in: VLDB, 1997, pp. 146-155.
[10] S. Agrawal, et al.,, Database tuning advisor for microsoft SQL server, in: SIGMOD, 2005, pp. 930-932.
[11] B. Dageville, et al., Automatic SQL tuning in oracle 10g, in: VLDB, 2004, pp. 1098-1109.
[12] S. Agrawal, et al., Automatic physical design tuning: workload as a sequence, in: SIGMOD, 2006, pp. 683-694.
[13] K. Schnaitter, et al., Colt: continuous on-line tuning, in: SIGMOD, 2006, pp. 793-795.
[14] N. Bruno, S. Chaudhuri, An online approach to physical design tuning, in: ICDE, 2007, pp. 826-835.
[15] K. Schnaitter, et al., On-line index selection for shifting workloads, in: ICDE, 2007, pp. 459-468.
[16] K. Works, et al., Index tuning for adaptive multi-route data stream systems, in: Scalable Stream Processing Systems, 2010, pp. 1-8.
[17] G.S. Manku, R. Motwani, Approximate frequency counts over data streams, in: VLDB, 2002, pp. 346-357.
[18] G. Cormode, et al., Finding hierarchical heavy hitters in data streams, in: VLDB, 2003, pp. 464-475.
[19] L. Ding, E.A. Rundensteiner, Index tuning for parameterized streaming groupby queries, in: Scalable Stream Processing Systems 2008, pp. 68-78.
[20] A. Deshpande, J.M. Hellerstein, Lifting the burden of history from adaptive query processing, in: VLDB, 2004, pp. 948-959.
[21] J. Kang, J.F. Naughton, S.D. Viglas, Evaluating window joins over unbounded streams, in: ICDE, 2003, pp. 341-352.
[22] T. Johnson, S. Muthukrishnan, I. Rozenbaum, Sampling algorithms in a stream operator, in: SIGMOD, 2005, pp. 1-12.
[23] G. Cormode, et al., Diamond in the rough: finding hierarchical heavy hitters in multi-dimensional data, in: SIGMOD, 2004, pp. 155-166.
[24] A. Mohr, Bit allocation in sub-linear time and the multiple-choice knapsack problem, in: Data Compression Conference, 2002, pp. 352-361.



348 K. Works et al. / Journal of Computer and System Sciences 79 (2013) 330-348

[25] M. Hammer, A. Chan, Index selection in a self-adaptive data base management system, in: SIGMOD, 1976, pp. 1-8.

[26] E.A. Rundensteiner, et al., CAPE: continuous query engine with heterogeneous-grained adaptivity, in: VLDB, 2004, pp. 1353-1356.

[27] R. Motwani, et al., Query processing, resource management, and approximation in a data stream management system, in: CIDR, 2003, pp. 245-256.

[28] J.M. Hellerstein, et al., Adaptive query processing: technology in evolution, IEEE Data Eng. Bull. 23 (2) (2000) 7-18.

[29] A. Gounaris, N.W. Paton, A.A. Fernandes, R. Sakellariou, Adaptive query processing: a survey, in: BNCD, 2002.

[30] A. Arasu, et al., Stream: the stanford stream data manager, in: SIGMOD Demo, 2003.

[31] D. Abadi, et al., Aurora: a data stream management system, in: SIGMOD Demo, 2003, p. 666.

[32] S. Chandrasekaran, et al., TelegraphCQ: continuous dataflow processing, in: SIGMOD Demo, 2003, p. 668.

[33] Z. lves, et al., An adaptive query execution system for data integration, in: SIGMOD, 1999, pp. 299-310.

[34] J. Chen, D. DeWitt, F. Tian, Y. Wang, NiagaraCQ: a scalable continuous query system for internet databases, in: SIGMOD, 2002, pp. 379-390.

[35] E.A. Rundensteiner, et al., Cape: continuous query engine with heterogeneous-grained adaptivity, in: VLDB Demo, 2004, pp. 1353-1356.

[36] T. Sutherland, B. Pielech, Y. Zhu, L. Ding, E.A. Rundensteiner, An adaptive multi-objective scheduling selection framework for continuous query process-
ing, in: IDEAS, 2005, pp. 445-454.

[37] D. Abadi, et al., Aurora: a new model and architecture for data stream management, in: VLDB, 2003, pp. 120-139.

[38] J. Kang, ].F. Naughton, S.D. Viglas, Evaluating window joins over unbounded streams, in: ICDE, 2003, pp. 341-352.

[39] L. Golab, M.T. Ozsu, Processing sliding window multi-joins in continuous queries over data streams, in: VLDB, 2003, pp. 500-511.

[40] M.A. Hammad, M.J. Franklin, W.G. Aref, A.K. ElImagarmid, Scheduling for shared window joins over data streams, in: VLDB, 2003, pp. 297-308.

[41] A. Arasu, J. Widom, Resource sharing in continuous sliding-window aggregates, in: VLDB, 2004, pp. 336-347.

[42] PA. Tucker, D. Maier, T. Sheard, L. Fegaras, Exploiting punctuation semantics in continuous data streams, TKDE 15 (3) (2003) 555-568.

[43] L. Ding, E.A. Rundensteiner, Evaluating window joins over punctuated streams, in: CIKM, 2004, pp. 92-101.

[44] N. Kabra, D. Dewitt, Efficient mid-query re-optimization of sub-optimal query execution plans, in: SIGMOD, 1998.

[45] G. Graefe, R. Cole, Optimization of dynamic query evaluation plans, in: SIGMOD, 1994, pp. 150-160.

[46] M.S. Server, http://www.microsoft.com/sql/default.mspx.

[47] DB2, http://www.ibm.com/software/data/db2/.

[48] Oracle, http://www.oracle.com/index.html.

[49] G. Graefe, W.J. McKenna, The volcano optimizer generator: extensibility and efficient search, in: ICDE, 1993, pp. 209-218.

[50] M.M. Astrahan, et al., System r: relational approach to database management, TODS 1 (2) (1976) 97-137, http://dx.doi.org/10.1145/320455.320457.

[51] R.V. Nehme, et al., Self-tuning query mesh for adaptive multi-route query processing, in: EDBT, 2009, pp. 803-814.

[52] P. Bizarro, et al., Content-based routing: different plans for different data, in: VLDB, 2005, pp. 757-768.

[53] A. Deshpande, An initial study of overheads of eddies, SIGMOD Rec. 33 (1) (2004) 44-49.

[54] A. Deshpande, et al., Lifting the burden of history from adaptive query processing, in: VLDB, 2004, pp. 948-959.

[55] L. Golab, S. Garg, M.T. Ozsu, On indexing sliding windows over on-line data streams, in: EDBT, 2004, pp. 712-729.

[56] A.V. Aho, ].D. Ullman, Optimal partial-match retrieval when fields are independently specified, ACM Trans. Database Syst. (1979) 168-179.

[57] E.J. Otoo, et al., Chunking of large multidimensional arrays, Tech. Rep. LBNL-63230, Lawrence Berkeley National Laboratory, February 2007.

[58] D. Rotem, K. Stockinger, K. Wu, Towards optimal multi-dimensional query processing with bitmapindices, Tech. Rep. LBNL-58755, Lawrence Berkeley
National Laboratory, September 2005.

[59] D. Rotem, et al., Minimizing i/o costs of multi-dimensional queries with bitmap indices, in: Scientific and Statistical Database Management, 2006,
pp. 33-44.

[60] J. Misra, D. Gries, Finding repeated elements, Tech. Rep., Cornell University, Ithaca, NY, USA, 1982.

[61] R.M. Karp, et al., A simple algorithm for finding frequent elements in streams and bags, ACM Trans. Database Syst. (2003) 51-55.

[62] C. Estan, G. Varghese, New directions in traffic measurement and accounting: focusing on the elephants, ignoring the mice, ACM Trans. Comput. Syst.
(2003) 270-313.


http://www.microsoft.com/sql/default.mspx
http://www.ibm.com/software/data/db2/
http://www.oracle.com/index.html
http://dx.doi.org/10.1145/320455.320457

	Optimizing adaptive multi-route query processing via time-partitioned indices
	1 Introduction
	1.1 Background on index tuning
	1.2 AMR index requirements
	1.3 The proposed approach: AMRI

	2 Motivation
	2.1 Example of search requests with varying criteria
	2.2 State-of-the-art indexing in AMR systems

	3 Preliminaries
	4 Adaptive multi-route index
	4.1 Physical index design
	4.2 Multiple index conﬁgurations

	5 Index assessment
	5.1 Index conﬁguration dependent costs CD
	5.2 Access pattern statistics
	5.3 Self reliant index assessment SRIA
	5.3.1 Basic SRIA
	5.3.2 Compact SRIA: access pattern reduction

	5.4 Dependent index assessment DIA
	5.4.1 Basic DIA
	5.4.2 Compact DIA: access pattern compression


	6 Bounds on statistics reductions
	6.1 Cost calculation reductions
	6.2 Statistic reductions

	7 Scheduling the tuning process
	8 Index migration
	8.1 All or nothing
	8.2 Partial migration

	9 Experimental results
	9.1 Experimental setup
	9.2 Evaluating alternative tuning methods
	9.3 State-of-art: number of hash indices
	9.4 AMRI vs state-of-art
	9.5 Skewing the number of possible query paths
	9.6 Summary of results

	10 Related work
	11 Conclusions
	Acknowledgments
	References


