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Spectral rendering, or the synthesis of images by taking into account the constituent wavelengths               

of white light, enables the rendering of iridescent colors caused by phenomena such as dispersion, 

diffraction, interference and scattering.  Caustics, the focusing and defocusing of light through a   

refractive medium, can be interpreted as a special case of dispersion where all the wavelengths  

travel along the same paths.  In this paper we extend Adaptive Caustic Mapping (ACM), a previous-

ly proposed caustics mapping algorithm, to handle physically-based dispersion.  Because ACM can 

display caustics in real-time, it is amenable to extension to handle the more general case of disper-

sion.  We also present a novel algorithm for filling in the gaps that occur due to discrete sampling of 

the spectrum.  Our proposed method runs in screen-space, and is fast enough to display plausible 

dispersion phenomena at real-time and interactive frame rates. 

Keywords: Spectral rendering; real time; dispersion; caustics. 

1.   Introduction 

Spectral rendering is the synthesis of images while taking into account the wave pro-

perties of light. Spectral rendering is necessary to render wavelength-dependent optics 

phenomena such as dispersion, interference, and diffraction, which cause white light to be 

split into its constituent wavelengths, generating iridescent colors. Spectral rendering            

can display phenomena such as the rainbows that occur when white light shines through            

a prism, oil slicks, hummingbird wings and the beautiful colors that appear inside gem-

stones such as diamonds. 

This paper focuses on rendering physically accurate dispersive refraction at real-time 

frame rates. Dispersion creates the rainbow of colors when white light shines through a 

prism. Figure 1 shows four examples of dispersive refraction rendered in real-time with 

our technique. When light travels through a transparent object different wavelengths of 

light are refracted at different angles, causing white light to be split into its constituent 

wavelengths (a phenomenon called dispersion).  We present an algorithm to render                

dispersive refraction, a phenomenon that is responsible for rainbows in the sky and the 

colors generated by a prism, in real-time on programmable graphics hardware. 
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Due to the complexity of spectral rendering, noise-free photorealistic image synthesis 

of dispersive refraction for example using LuxRender, a physically-based unbiased ray 

tracer, can take up to one hour. Spectral rendering can be slow because white light has to 

be sampled at more than three (RGB) wavelengths, and refraction equations are then 

evaluated at these multiple wavelengths before final conversion to RGB colors for dis-

play. By drawing similarities between caustics and dispersive refraction, we have been 

able to extend a state-of-the-art real-time caustics algorithm to render dispersive refrac-

tion in real time. We observe that the key difference between dispersion and caustics is 

that while the wavelengths of light are refracted along different paths in dispersion, all 

wavelengths travel along the same paths to generate caustics. 

Specifically, we have extended the Adaptive Caustic Mapping (ACM) algorithm
24

 to 

perform real-time spectral dispersion.  ACM is a real-time image-space method for gener-

ating refractive caustics on programmable graphics hardware.  Our method, which we call 

Adaptive Spectral Mapping (ASM), begins with the ACM algorithm but adds spectral 

refraction calculations at object surfaces.  We extend the concept of caustics maps in  

order to create spectral maps. To create the spectral map, we simulate external dispersion 

by refracting seven wavelengths at the surface of refractive objects according to Snell’s 

law. In a separate deferred rendering pass, we also calculate internal dispersion, which 

occurs when white light is split into component colors inside a refractive object such as 

the colors seen inside diamonds. Finally, we propose a novel algorithm for filling gaps 

that occur as a result of sampling at discrete wavelengths of the spectrum. Our algorithm 

runs at speeds of up to 60 frames per second (FPS) while rendering physically-accurate 

spectral dispersion. More generally, by pointing out the similarities between caustics 

mapping and spectral rendering, we hope that our work shall encourage the synthesis of 

real-time spectral rendering algorithms from caustics algorithms, which have become 

quite mature in the graphics literature. 

The rest of the paper is as follows.  Section 2 describes related work. Section 3 gives 

some background on caustics rendering. Section 4 describes our technique for rendering 

spectral dispersion using Adaptive Spectral Maps (ASMs), in addition to our method                     

for removing the gaps inherent in the dispersion when taking discrete samples of the  

spectrum. Section 5 describes our implementation. Section 6 describes our results and 

Section 7 is our conclusion and future work. 

Fig. 1.    (Color online) Four images generated with our algorithm.  All four scenes are rendered using seven 

wavelength samples.  The ring on the left executed at 15 frames per second, the beer glass at 19 fps, the dragon 

at 17 fps, and the diamond at 30 fps. 
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2.   Related Work 

Due to space constraints, we limit our review of related work to techniques to render  

dispersive refraction in real time. Initially, spectral rendering was described in the context 

of ray or path tracing.  Cook and Torrance
2
 presented a method for rendering materials 

that takes into account light wavelengths and spectral energy distribution. Thomas,
19

 

Musgrave,
15

 and Wilkie et al.
21

 all proposed techniques for rendering dispersion using ray 

tracing methods. 

Most recent real-time spectral rendering research uses the Graphics Processing                

Unit (GPU) to perform wavelength calculations.  Guy and Soler
8
 describe a technique              

for real-time rendering of dispersion inside gemstones. Their technique was specific to 

gemstones and also did not account for the dispersion of light as it exited the object.  

Kanamori et al.
13

 published on the physically accurate display of rainbows under different 

atmospheric conditions.  Ďurikovič et al.
3
 presented an entire spectrally-based framework 

for interactive image synthesis that could display multilayered thin-film interference.  

However, they precompute a large portion of the required data and store the resulting data 

in textures for later access via a shader.  We also store scene data in textures (as we are 

presenting an image-space algorithm), but our approach gathers contributions each frame 

as opposed to being precomputed.  Gathering each frame allows rendering dynamic lights 

and camera movement, which is not possible when values are precomputed before a scene 

is actually rendered. 

The most similar work to ours is the paper by Sikachev et al.,
18

 in which they display 

spectral caustics on planes.  Their method of filling in the gaps between color “bands” 

due to sparse sampling of the spectrum is similar to ours, however they differ in that their 

algorithm can only project caustics onto planes as opposed to arbitrary surfaces as this 

paper presents. 

3.   Background 

3.1.   Caustics rendering 

Since our proposed technique extends Adaptive Caustic Mapping, a caustics rendering 

algorithm, we now review prior work on caustics rendering. The first image synthesis 

algorithms that could display caustics were offline algorithms such as path tracing.  

Kajiya
12

 and Shirley
17

 both described caustics generation using ray and path tracing algo-

rithms.  Shirley’s paper has a similarity to ours in that sparse “feeler” rays are first fired 

into the scene to locate any specular objects. A high density of rays is then sent in the 

direction of specular objects to obtain caustics of sufficient resolution.  Jensen’s photon 

mapping algorithm
11

 can also generate caustic effects, using a special “caustics photon 

map” where extra photons are sent in order to create higher resolution data. 

In the last decade researchers have been able to generate realistic caustics with                           

interactive algorithms. One of the first was from Wand and Straßer,
20

 who utilized the 

observation that facets of a reflective object lit by a light source create spots on diffuse 

surfaces that are in essence blurred images of the light source itself.  Gunther et al.
7
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presented a distributed photon mapping algorithm capable of displaying caustics that ran 

at interactive rates, but required between 8 and 36 CPUs working in tandem to get suffi-

cient performance.  Yu et al.
25

 presented an algorithm for displaying caustics in real time 

that renders based on a pair of caustic surfaces instead of using photons gathered on scene 

geometry as most other methods do. 

The idea for “caustic mapping,” in which a special texture is created containing               

caustic data that is projected onto a scene similar to shadow mapping, began with the 

Shah et al. image-space technique.
16

  Their method of projecting caustics into the scene is 

quite similar to ACM, however they refract photons through objects at vertices instead of 

adaptively sampling the object’s surface, as ACM does.  Ming et al.
14

 presented a caustic 

mapping-like method that showed the realistic effects of light shining through a stained-

glass window.  However, their caustics are generated based on a stained-glass texture as 

opposed to dispersive refraction due to an arbitrary object, as ours is. 

Wyman et al.
22

 presented a caustic mapping algorithm similar to Shah’s that also op-

erated in image-space.  Like photon mapping, it requires two passes: one to emit particles 

from the light source and interact with a refractive object, and a second to gather their 

contributions as seen from the eye.  Wyman extended his own algorithm with a hierar-

chical caustics generation method
23

 that used mipmaps and a reduced resolution version 

of the scene to increase algorithm speed.  Wyman et al. later improved hierarchical caus-

tics mapping to yield Adaptive Caustic Mapping (ACM),
24

 which is described in detail in 

the next section since our work extends it. 

3.2.   Adaptive caustic mapping 

We chose to extend Adaptive Caustic Mapping in particular because it solved several 

issues inherent in other caustic mapping algorithms: notably aliasing due to insufficient 

sampling and excessive temporal noise due to sampling variations.  ACMs use an im-

portance-based adaptive photon sampling algorithm that increases both image quality                

and rendering speeding when compared to other real-time caustics rendering methods. In 

addition ACM utilizes a deferred rendering process that displays refractive objects more 

quickly than other methods. 

For a thorough description of ACM, we refer the reader to Wyman’s original paper.
24

 

However, to aid in understanding, we will summarize the important points of the                 

algorithm here and then describe our spectral dispersion extension.  Wyman’s ACM paper 

presented separate but related algorithms for two effects: one for caustic generation                 

and a second for displaying refractive objects.  We extended both parts, so the next two 

sections describe each one. 

3.2.1.   Caustic generation 

The general structure for using ACMs to create caustic effects is similar to other caustic 

mapping techniques.  Photons are fired into the scene from the light source and a novel 

method is used to place photons on refractive objects.  These photons are refracted 
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through the object and splatted onto the caustic map, which is then rendered by projecting 

it into the scene like a shadow map. 

Where ACMs differ from other caustic mapping algorithms is in the photon emission 

and refractive object “locating” phase.  Other caustic mapping algorithms normally fix the 

number of photons prior to emission and send them throughout the entire light’s view, 

often wasting computation time because photons that may not actually hit the refractive 

object are still processed. 

ACMs start with a reduced resolution view of the scene from the light using mipmaps, 

and only emit a few regularly spaced photons into that image.  In a loop, moving up one 

mipmap level at a time, each photon that actually hits a refractive object is subdivided 

into four new photons, increasing photon density and thus the resolution of the caustics. 

Photons that do not hit a refractive object are simply discarded at low mipmap levels, 

never to be processed.  When this photon emission phase is completed, the photon buffer 

contains a high-resolution set of points that all intersect the surface of the refractive                

object. Figure 2 illustrates this process on the bunny model. These photons are all                         

then refracted through the object and splatted into the caustic map, as shown in Figure 3 

for the case of a sphere. 

 

 

Fig. 2.    (Color online) Photon traversal and refinement.  In the first stage, very few photons are evenly spread 

through the scene in order to find the refractive objects.  Each subsequent level refines the photons that hit the 

refractive objects. 

 

 

Fig. 3.    (Color online) Photon refraction through a sphere, showing three photon paths before splatting. 
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3.2.2.   Displaying refractive objects with deferred refraction 

After the caustics have been projected onto the background geometry, the display of the 

refractive objects in the scene is completed in a separate pass.  Pixels that lie on a refrac-

tive object’s surface are treated as photons, just like with caustics calculations.  Using the 

front-facing normal on the refractive object at the current pixel’s location, the photon is 

refracted once, and then a second time at the back-facing surface.  The photon is then 

projected out to the background geometry, where a texture fetch is performed to get the 

color for that pixel on the refractive object.  Figure 7 illustrates this process, with pixel A 

in that image describing the ACM version. 

4.   Spectral Dispersion Using Adaptive Spectral Maps 

To extend ACMs to render spectral dispersion, we extend the concept of caustics maps               

in order to create our spectral maps.  We made changes to both the caustic generation 

algorithm and the deferred refraction algorithm. Specifically, the caustic generation     

algorithm was extended to handle what we will call “external” dispersion, which is pro-

duced by light exiting a refractive object and landing on a diffuse surface. This is the type 

of dispersion is seen when white light passes through a prism.  The deferred refraction 

algorithm was extended to handle “internal” dispersion, which occurs when white light is 

split into component colors inside a refractive object such as the colors seen inside               

diamonds. 

Our spectral dispersion algorithm begins with a choice of how many wavelengths                 

of the visible light spectrum to utilize. The human eye can see wavelengths between                

a 400 nm wavelength for violet and around 700 nm for red.  We chose to sample seven 

wavelengths that are evenly distributed through the visible spectrum. The number of sam-

ples chosen is arbitrary, though using fewer than seven causes too many missing              

colors, and with more wavelengths, speed degradation becomes a major issue.  Our seven 

samples each correspond to a different color of the rainbow, and each has a specific 

wavelength. Figure 4 shows the wavelengths and colors we chose to sample from the 

spectrum. 

 
Fig. 4.    (Color online) Our seven chosen wavelength samples. 

Refraction of light between two mediums with different refractive indices, regardless 

of wavelength, can be described using Snell’s Law.
9
 This law is represented by the                 

following equation: 

 1 2sin sin .i tn nθ θ=  (1) 
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Light traveling from medium n1 at incident angle �i is refracted when entering                 

medium n2 at angle �t.  The refraction angles in Snell’s Law, when considering light    

dispersion, are wavelength dependent.  These angles, taking into account wavelength, can 

be calculated using Cauchy’s equation,
1
 which describes an empirical relationship            

between a wavelength in the visible spectrum and the refractive index of a particular             

material: 

 
2 4

( ) ... .
B C

n Aλ
λ λ

= + + +  (2)  

Where λ is the wavelength, and A, B, C, etc. are coefficients specific to a particular 

material.  It should be noted that Cauchy’s equation only works for the visible spectrum, 

not the entire spectrum of light.  Since we are only interested in the visible spectrum        

however, it is adequate.  The above is the general form of this equation, but for our                

purposes it is sufficient to use the following two-term form initially used by Musgrave
15

: 

 
2

( ) .
B

n Aλ
λ

= +  (3) 

The A and B coefficients are based on physical measurements, and can be found in            

tables in various sources such as physics textbooks and the Internet.  We used data from 

the Encyclopedic Dictionary of Polymers.
5
 

After the photons have all been emitted, positioned in the photon buffer on the refrac-

tive object, and are ready to be refracted and splatted, the next stage of our algorithm 

takes place.  Just before each photon refracts at the front surface of the refractive object, it 

is split into seven separate photons, and each new one is refracted according to the index 

of refraction generated for it from Cauchy’s equation.  Each of these seven photons is 

then refracted a second time on the back-facing surface of the object, after which its final 

position is calculated for splatting into the spectral map.  Figure 5 illustrates this process. 

 

Fig. 5.    (Color online) Refraction using seven samples. The dotted line indicates the original ACM algorithm, 

and the solid lines are our extension. 
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In Figure 5, the photons are the small yellow circles. Up until they are splatted into 

the spectral map, they are regarded only as wavelengths.  Only after projection from the 

back of the refractive object, and just before splatting, are they converted from a wave-

length to an RGB value. 

Again in Figure 5, note how each individual refracted ray’s final position on the dif-

fuse surface is in a unique location.  Depending on the refractive index of that material, 

and the shape of the object, all (or most) of the rays may still land in nearly the same       

location.  In this case the colors would all be added back together, producing white.  It is 

for this reason that the RGB values for each wavelength must be carefully calculated so 

that they sum to white. 

At this point the spectral map is complete and ready to be projected into the scene.  

The spectral map is a texture that contains the final locations of photons that have been 

refracted through the specular object according to their wavelengths and converted to 

RGB colors.  The difference between the original ACM caustic map and our spectral map 

is that we have splatted seven times as many photons into the texture, and they are colored 

and positioned based on wavelength calculations, thus producing spectral dispersion as 

opposed to simple caustics. 

Because we are only using seven samples, the distance between where each specific 

ray intersects the diffuse surface matters.  Issues can sometimes arise in which the caustics 

have gaps between each color, and Figure 6 illustrates this problem.  The next section 

outlines and describes our novel algorithm for handling these spectrum sampling artifacts 

on the spectral map. 

 

Fig. 6.    (Color online) Problems with discontinuous caustics when using seven samples.  Each sample color is 

clearly visible, with gaps between the colors. 

Once the spectral map has been created and projected into the scene like a shadow 

map, internal dispersion is calculated in a completely separate pass at the end. No               

spectral map is required because we are only coloring the pixels on the surface of the          

refractive object.  In ACMs the color of each pixel on the surface of the refractive object 

is calculated using a single background color texture fetch, however in ASMs we perform 

seven texture fetches — one for each wavelength sample.  Figure 7 shows how this works.  
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Pixel A is a representation of original ACMs, and pixel B shows how our extension 

works.  Note that the angles of the lines are exaggerated to illustrate the process better. 

Each of these texture fetches may be in a slightly different location, akin to the pho-

tons for each wavelength being splatted into a different location in the spectral map.  The 

color of the texel chosen from the background texture is altered by the color of the wave-

length that hits it, so if all wavelengths arrive at the same location, or the same color as in 

Figure 7 (because they add up to white), then the color is exactly the same as the back-

ground.  The wavelength is converted to an RGB value here, when it is calculated based 

on the color of the background texture.  The largest effect is seen where the background 

texture has a transition between light and dark colors, because the separate photons                     

of different wavelengths may hit both the light side and the dark side.  This can be seen  

in Figure 6, where the red and gray walls intersect as viewed through the gem an orange 

color is present. 

Fig. 7.    (Color online) Deferred refraction. View is from above, looking straight down (A and B are on the 

front of the prism). The pixel on the surface of the prism at A shows original ACM, and the pixel at B                          

illustrates our extension. 

4.1.   Filling the gaps 

One of the major issues with spectral rendering using discrete sampling of the spectrum is 

that gaps or empty portions occur in the resulting spectral map as shown in Figure 6. Note 

the absence of gaps in the rainbows directly under the refractive object.  A general solu-

tion to this problem, which works under all situations, must be found: detecting whether 

gaps occur in the caustics or not in order to fix it. 

The simplest solution is to increase the number of wavelength samples taken along      

the visible spectrum.  This approach indeed results in fewer gaps and holes in addition                

to greater physical accuracy.  Unfortunately, it also greatly reduces rendering speed.  In 
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addition, Sikachev et al.
18

 reported that for their algorithm, gaps still existed even when 

using 20 wavelength samples.  To confirm their claims, we tested our algorithm with 21 

samples, and Figure 8 shows the result. 

 

 

Fig. 8.    (Color online) Adaptive Spectral Mapping using 21 evenly-distributed wavelength samples. 

As can be seen in Figure 8, the worst large gaps have actually been reduced to a great 

degree.  Where there is a large dispersion amount however, there are still some visible 

gaps between each color band (notably on the bottom left of the image), and in addition 

the frame rate drops by 75 percent when 21 samples were used.  The gem object Figure 6, 

with seven samples, was performing at 40 frames per second, and Figure 8, with 21 sam-

ples, was performing at 10 frames per second. 

Besides increasing the number of wavelength samples, various methods have been 

proposed.  In Ref. 18 again Sikachev et al. proposed interpolating colors between the 

caustics that do exist in order to solve the color gap problem.  They integrate the inter-

polation results for each point by performing additive blending, and use a given step size 

which is taken in the view space coordinates. 

We propose a different method utilizing random sampling.  For each texel in the spec-

tral map, a number of randomly-located samples are first taken from a preset radius 

around the current texel.  If the sampled pixel contains no color, it is simply disregarded.  

If the sampled pixel contains color, it is added to an accumulating color variable.  In addi-

tion to this color, a counter is incremented so the number of samples that “hit” a color                 

are added up.  If the number of hits is above a certain threshold when the sampling is 

complete, the current pixel’s color (if any) is added to the accumulated color from the hit 

samples.  If this threshold is not reached, the current texel’s color (if any) is pushed 

through without adjustment.  This method has three results: the first is that gaps are filled 

effectively using a combination of the pixel colors surrounding the current texel, which is 
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in essence an interpolation process.  The second effect is that if the rainbow has no gaps, 

but does have banding due to only using seven samples, the bands are removed.  The third 

and final effect is that due to the counting of  “hits” around the current pixel, the edges of 

the dispersion effects are able in many cases to stay relatively sharp compared to just a 

simple blurring or smearing process. Figure 11 shows gap filling, and Figure 12 illustrates 

the last two effects. 

Gap filling is accomplished completely in image space, with the only input being the 

spectral map generated in the previous pass, while the output is the spectral map texture 

with gaps filled in. Pseudocode for our algorithm is shown in Figure 9. 

A diagram illustrating the idea behind our gap-filling algorithm is shown in Figure 10.  

The algorithm begins with line 1 in Figure 9 by fetching the color of the current pixel in 

Fig. 9.    Pseudocode for our gap-filling algorithm. 

 

 

Fig. 10.    (Color online) A diagram showing how our filling algorithm works.  Each grid square is one texel in 

the spectral map.  Here the purple squares are the random samples.  Four are in the yellow band and four are              

in the orange band, with two not hitting any color.  Thus, pixel A is output as a 50–50 combination of orange 

and yellow. 
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Fig. 11.    (Color online) The spectral map texture before (A) and after (B) filling in the gaps.  Note small gaps 

are filled effectively, but larger ones are not — this is due to the sample radius not reaching all the way between 

the gaps. The edges of the dispersion effect are still sharp, however. A larger radius, while filling all gaps, 

would create a more blurry dispersion effect. 

Fig. 12.    (Color online) (A) shows the bands of spectral dispersion inherent when using seven samples. 

(B) shows the result of performing our gap-filling algorithm.  Note in (B) the still-sharp border across the top of 

the dispersion. 

 

the pipeline.  A new black color is set in line 2.  After this, we iterate for a pre-determined 

number of samples.  Each sample in line 4 is a texel chosen from a random location              

within a set radius from our current pixel.  In line 5 we check whether the sample texel 

contains any color or not.  If color exists, it is added to the black color set back in line 2, 

and a counter is incremented.  In line 8 we check whether this counter is greater than a 

certain threshold of pixels with color, and if it is, our new color is added to the current 

pixel’s color (if it has any) and is ouput to the new spectral map.  Figure 11 shows images 

of the spectral map before and after our gap-filling procedure. 

Of note are that the number of samples, the radius to choose samples from, and the 

threshold for outputting an adjusted color or a simple pass-through color all have effects 

on the performance and quality of the final image.  Number of samples obviously has a 
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significant effect on the calculation time of the algorithm. The other two choices are more 

subtle.  The radius for choosing samples matters because if it is too large we may end up 

picking colors that should not be mixed with the current pixel, or miss adjacent colors 

altogether.  If the radius is too small, then even small gaps will not be filled in.  The 

threshold of hit pixels vs. missed pixels has an effect on both filling gaps and on what            

the edges of the dispersion will look like.  Too low of a threshold will cause a noisy or 

blurry effect, and too high of a threshold might cause few or no gaps to be filled in. The 

specific values we chose are described in section 5 with the rest of the implementation 

information. 

5.   Implementation 

We implemented using C/C++ and OpenGL 4.2, with vertex, geometry, and fragment 

shaders written in GLSL.  The video card we used was a NVIDIA GeForce GTX480 in a 

Windows 7 environment. 

We began by implementing Wyman’s Adaptive Caustic Mapping algorithm.
24

 His 

shaders were altered and extended to handle spectral dispersion — specifically to handle 

multiple wavelength samples instead of just single photon calculations. The photon               

splatting shaders were extensively modified by inserting a new geometry shader to                

perform  the photon splitting into seven samples, and also to handle the refraction for 

each wavelength. The fragment shader was altered to handle the extra photons and                

convert the wavelength values to RGB. 

The ACM code was also altered to make it faster, separate from the specific disper-

sion extensions; instead of traversing through all six mipmap levels of the refractive            

object texture, we only traverse through three.  This had two effects: almost an order of 

magnitude speed increase (in one scene going from 2 fps to 12 fps), and a reduction in 

caustic quality. The quality decrease specifically meant dimmer caustics and more 

“holes”, or missing pixels, in them.  We took care of some of this with the gap-filling 

shader. 

After creating the spectral map and before projection onto the scene’s background  

geometry, we inserted our novel gap-filling shader.  It works directly on the spectral map 

itself in image-space.  Figure 13 shows the entire pipeline for this project from beginning 

to final image. 

Each box in Figure 13 describes a separate render pass.  The yellow, blue, and green 

boxes in the background show how those passes are being rendered — whether it is from 

the light’s view, from the camera’s view, or in image space (on a full-screen quad).  This 

diagram also compares our Adaptive Spectral Mapping algorithm with the original 

ACMs: each white box is unaltered from the original ACM algorithm, light red boxes are 

altered from the original ACMs, and pass 5, the dark red box, is a completely new pass.  

As can be seen in the figure, all of the actual spectral dispersion calculations described in 

this paper are performed in the image space passes.  Each and every pass utilizes a com-

pletely different shader, except for passes 2 and 3, which both use the same one to output 

the pixel normal data. 
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Fig. 13.    (Color online) Our rendering pipeline from beginning to end.  This whole pipeline is completed each 

frame.  This diagram shows both our Adaptive Spectral Mapping algorithm and the original ACM algorithm: 

the red boxes are passes altered from original ACMs, and pass 5, with the dark red background, is a completely 

new pass. 

 

Fig. 14.    Photon splat pseudocode. 

 
Pass 4’s alterations are shown in the pseudocode in Figure 14.  Line 1 was added in 

order for the algorithm to work with all seven wavelengths instead of just one photon,                   

as with the original ACM code.  Line 2 was altered in order to use the GLSL built-in         

refract() function instead of the custom ACM refraction function for speed reasons (it is 

not as physically accurate, but the visual difference is quite minimal).  Specifically, the 

difference is that the ACM refraction function takes care of the case where an incident ray 

reflects off the object’s surface, whereas the built-in GLSL function does not.  Line 3 still 
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uses the ACM implementation’s more physically accurate refraction function, but both 

lines 2 and 3 were edited to use our Cauchy equation-calculated refractive indices per 

wavelength.  Line 4 is a geometry shader requirement, just there to emit the photon/vertex 

so the fragment shader will see each and every photon.  Line 5 is identical to the ACM 

author’s original code. In our newly created line 6, we convert the wavelength for                   

that photon into an RGB value.  Line 7 is a simple call to gl_FragData, required for all 

fragment shaders. 

Our conversion from a wavelength to an RGB value is simple.  Because we know ex-

actly which wavelengths are being sent to the splat shader, we can set a constant red, 

green, and blue value for each one.  As mentioned previously, these values must be care-

fully chosen to make sure they sum to white.
15

 Table 1 gives the RGB values we used for 

each wavelength. These are approximations based on using the CIE color matching         

functions to get the relative contributions of light from wavelength, and converting them 

to XYZ color space coordinates.
4
 The color matching functions can be described by the 

integral: 

 
0

( ) ( ) .X I x dλ λ λ
∞

= ∫  (4) 

Where I(λ) is the spectral power distribution, x is the color-matching function, and λ  

is the wavelength in nanometers.  The Y and Z components are calculated in the same 

way.  From the XYZ coordinates, it is possible to get RGB values using the CIE color 

space. 

Table 1.    The RGB values we chose for each wavelength. Colors 

are on a 0–255 scale.  Before splatting, the totals are scaled so all 

dispersed values are not bright white. 

Wavelength (nm) Red Green Blue 

380 77 0 204 

430 51 51 255 

480 0 229.5 255 

530 76.5 255 102 

580 204 229.5 77 

630 229.5 128 0 

680 255 0 0 

Total 893 893 893 

 
In this way, a particular pixel’s color in the scene is summed for each wavelength-

specific photon that hits it.  If all wavelengths end up on the same pixel, it will be white. 

If only one photon wavelength hits a particular pixel, the pixel will only be that color. 

After the spectral map is created, the next pass performs our gap filling shader                    

to take care of gaps and any noise or missing pixels in the spectral map as described in 

Section 4.1.  In our testing and for our scenes, we found that a good maximum sample 

radius was seven pixels out from the current pixel.  A smaller radius did not catch enough 
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gaps or missing pixels, and a larger one caused too much blurring.  Within that radius,           

15 samples appeared to give sufficient color quality while still performing well.  Our 

threshold for detecting whether we are inside a gap or not was set at 10 — that is, if at 

least 10 out of the 15 total samples actually detect color in the spectral map, the pixel’s 

color is changed.  These are the values we used for our performance tests and in the              

images in Figures 1, 11, 12, 15, 16, and 17.  Note that these values worked well for our 

particular scenes, and different values may work better for scenes where the refractive 

object takes up most of the light’s view.  For example, a diamond that has a light very 

close to it would most garner better performance with fewer than 15 samples within the 

sample radius.  Gap-filling is not performed on the surface of the refractive object as it is 

with the spectral caustic map because gaps and missing pixels do not occur there.  This is 

due to the fact that photons are not being splatted into a separate map — colors are being 

pulled from background geometry, which always exists (or is black if nothing is there).  

The one issue that may come up is non-smooth transitions between some colors, which 

was also observed and outlined in Ref. 21.  It is normally only apparent when using an 

unnatural and extremely dispersive refractive index for the object. 

6.   Results 

Table 2 lists performance results of our algorithm compared to Adaptive Caustic Map-

ping, and Figure 15 shows all our test scenes. We performed tests on our Adaptive           

Spectral Mapping algorithm using both seven and 21 wavelength samples. As can be seen 

in the table, the extra photons needed for dispersion and gap-filling reduce performance in 

some scenes, and increasing wavelength samples severely reduced speed in all scenes.  

The sphere, at least with seven samples, still performs at the same speed as with ACMs, 

most likely due to its simplicity and the small size of its footprint from the view of the 

light.  The gem, being composed of far fewer faces than all the other objects, still per-

forms slower than the sphere since it is rendered onto more fragments due to its size, 

which is an image-space algorithm issue discussed in the following paragraphs. The 

greatest difference in performance is the glass on the table, which we believe is also due 

to its physical size in the light’s view.  Also, because the original ACM algorithm has no 

smoothing or blurring shader, it can display the scenes with better performance. 

Table 2.    Frame rates for our test objects, which can be seen in Figure 15. This table compares the relative 

speeds of the different rendering methods and shows the number of faces in each scene.  Note that the renderer 

had could run at a maximum frame rate of 60 Frames Per Second (FPS). 

Object Number of Faces 

ACMs 

(FPS) 

ASMs 

7 Samples (FPS) 

ASMs 

21 Samples (FPS) 

Sphere 5120 60 60 19 

Ring 65536 27 20 9 

Gem 24 60 40 10 

Bunny 138902 12 10 6 

Glass on Table 12137 60 16 5 
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Fig. 15.    (Color online) Our five testing scenes.  Dispersion is intentionally made brighter than it normally 

would be  to show detail. 

Since this algorithm runs in image space, the number of pixels covered by the refrac-

tive object from the light’s view has an impact on frame rate.  The closer the object is to 

the light, the more pixels involved in caustic calculations, and the slower the performance.  

In fact, the relationship between this number of pixels involved and frame rate is closely 

tied.  Table 3 shows what happens as the sphere is moved closer to the light source. 

Table 3.    Table showing relative number of pixels taken up by a refractive sphere as seen from the 

light source and a frame rate comparison. 

Frame Rate (frames per second) Percentage of Total Pixels Covered by Refractive Object 

60 2.5% (sphere on “floor” of Cornell box) 

40 4% 

30 7% 

20 13% 

10 33% 

 
The percentage of fragments covered in the light’s view by the refractive object di-

rectly affects the algorithm’s performance. Of course, this is closely related to the              

common graphics problem of quality vs. speed as well.  If the refractive object is close to 

the light, then more photons will be refracted through the object, increasing the quality of 

the caustics and dispersion.  However, as Table 3 illustrates, the quality boost also results 

in lower frame rates. 

Figure 16 shows a comparison between a screenshot of our software and a ground 

truth image rendered with the unbiased offline engine LuxRender. Part A in the figure 

took 1.5 hours to render, and part B was performing at 44 frames per second. Our  
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Fig. 16.    A comparison between a ground-truth render of the scene. A, and a scene created with our algorithm, 

B.  Render time for A was 1.5 hours, and B was performing at 44 frames per second. 

 

 

Fig. 17.    (Color online) A close-up of some of the dispersion from Figure 16. 

algorithm has produced a physically plausible representation of dispersion through a 

prism, which runs at real-time frame rates.  There are a few things to note: the size and 

position of the dispersion and shadow on the wall are quite similar, though in the scene 

using our algorithm they are slightly shorter.  This is most likely due to the positioning of 

the light being slightly different in each scene.  Our scene contains a couple artifacts: a 

straight line between the shadow and the dispersion.  These are possibly a result of imper-

fect sampling of the spectral map, or issues with light refraction calculations through cer-

tain triangles of the prism itself.  The prism itself is also slightly different, probably due to 

the image-space refraction method used in our algorithm, as opposed to the more physi-

cally accurate method used in LuxRender. 

Figure 17 gives a close-up comparison of the dispersion on the wall.  As shown, the 

dispersion is very similar between the ground truth and our algorithm’s image, especially 
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in color.  Take particular note of the slight red shift on the left of each band of light, and 

the blue shift on the right of each band.  These color shifts are a result of utilizing spectral 

dispersion calculations, and would not be present using an algorithm that does not ac-

count for the wave nature of light. 

7.   Conclusion and Future Work 

We have presented Adaptive Spectral Mapping, a spectral dispersion extension to the 

proposed algorithm Adaptive Caustic Mapping.  We described our changes to both ACM 

itself and to the related algorithm for deferred refraction.  Our algorithm displays a plau-

sible approximation of the dispersion phenomenon of light, and does so at interactive and 

real-time frame rates.  Our ASM algorithm is one of the first of its kind, bringing spectral 

rendering one step closer to being fully displayed in real-time contexts such as games. 

There are some limitations to our algorithm, however.  The gap-filling procedure cre-

ates horizontal and vertical lines in some situations due to our sampling process.  This 

could be ameliorated with a more random sampling method, perhaps inside a certain radi-

us around the current pixel.  This would introduce a temporal cohesion issue (depending 

on the randomness of the sampling), but at the same time there would be fewer vertical 

and horizontal noise lines. 

Many opportunities exist for future directions of research.  The first of which is to ex-

tend ASMs to simulate reflective caustics, which at least one other caustics mapping               

algorithm
16

 has succeeded in accomplishing.  Others include extending ASMs to display 

other spectral phenomena that require wavelength calculations, such as diffraction and 

thin-film interference.  Integrating a fast volumetric caustics algorithm with ours would 

produce beautiful images, along the lines of recent research such as Ref. 10.  Dispersion 

colors, like shadows, become more diffuse the farther they are from the object that creates 

them.  Any gaps between the colors also become larger the farther they are from the re-

fractive object.  A distance-aware blurring algorithm such as Screen-Space Soft Shadows
6
 

could be modified to work with our spectral maps to make them more physically accurate, 

and also help with very distant gaps as well. 
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