
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/334341392

DroidPatrol: A Static Analysis Plugin For Secure Mobile Software Development

Conference Paper · July 2019

DOI: 10.1109/COMPSAC.2019.00087

CITATIONS

2
READS

93

7 authors, including:

Some of the authors of this publication are also working on these related projects:

Formal Analysis of Advanced Metering Infrastructure Security and Resiliency View project

Formal Security Analytics for State Estimation in Smart Grid View project

Md Arabin Islam Talukder

Kennesaw State University

13 PUBLICATIONS 10 CITATIONS

SEE PROFILE

Hossain Shahriar

Kennesaw State University

130 PUBLICATIONS 838 CITATIONS

SEE PROFILE

Kai Qian

Kennesaw State University

159 PUBLICATIONS 827 CITATIONS

SEE PROFILE

Mohammad Ashiqur Rahman

Florida International University

91 PUBLICATIONS 486 CITATIONS

SEE PROFILE

All content following this page was uploaded by Md Arabin Islam Talukder on 29 July 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/334341392_DroidPatrol_A_Static_Analysis_Plugin_For_Secure_Mobile_Software_Development?enrichId=rgreq-1b56929f6b1006a42297ed70f983dcc6-XXX&enrichSource=Y292ZXJQYWdlOzMzNDM0MTM5MjtBUzo3ODYwMzE3MzMzOTU0NTdAMTU2NDQxNTk3NzQxNw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/334341392_DroidPatrol_A_Static_Analysis_Plugin_For_Secure_Mobile_Software_Development?enrichId=rgreq-1b56929f6b1006a42297ed70f983dcc6-XXX&enrichSource=Y292ZXJQYWdlOzMzNDM0MTM5MjtBUzo3ODYwMzE3MzMzOTU0NTdAMTU2NDQxNTk3NzQxNw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Formal-Analysis-of-Advanced-Metering-Infrastructure-Security-and-Resiliency?enrichId=rgreq-1b56929f6b1006a42297ed70f983dcc6-XXX&enrichSource=Y292ZXJQYWdlOzMzNDM0MTM5MjtBUzo3ODYwMzE3MzMzOTU0NTdAMTU2NDQxNTk3NzQxNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Formal-Security-Analytics-for-State-Estimation-in-Smart-Grid?enrichId=rgreq-1b56929f6b1006a42297ed70f983dcc6-XXX&enrichSource=Y292ZXJQYWdlOzMzNDM0MTM5MjtBUzo3ODYwMzE3MzMzOTU0NTdAMTU2NDQxNTk3NzQxNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1b56929f6b1006a42297ed70f983dcc6-XXX&enrichSource=Y292ZXJQYWdlOzMzNDM0MTM5MjtBUzo3ODYwMzE3MzMzOTU0NTdAMTU2NDQxNTk3NzQxNw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Md_Arabin_Islam_Talukder?enrichId=rgreq-1b56929f6b1006a42297ed70f983dcc6-XXX&enrichSource=Y292ZXJQYWdlOzMzNDM0MTM5MjtBUzo3ODYwMzE3MzMzOTU0NTdAMTU2NDQxNTk3NzQxNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Md_Arabin_Islam_Talukder?enrichId=rgreq-1b56929f6b1006a42297ed70f983dcc6-XXX&enrichSource=Y292ZXJQYWdlOzMzNDM0MTM5MjtBUzo3ODYwMzE3MzMzOTU0NTdAMTU2NDQxNTk3NzQxNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Kennesaw_State_University?enrichId=rgreq-1b56929f6b1006a42297ed70f983dcc6-XXX&enrichSource=Y292ZXJQYWdlOzMzNDM0MTM5MjtBUzo3ODYwMzE3MzMzOTU0NTdAMTU2NDQxNTk3NzQxNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Md_Arabin_Islam_Talukder?enrichId=rgreq-1b56929f6b1006a42297ed70f983dcc6-XXX&enrichSource=Y292ZXJQYWdlOzMzNDM0MTM5MjtBUzo3ODYwMzE3MzMzOTU0NTdAMTU2NDQxNTk3NzQxNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hossain_Shahriar?enrichId=rgreq-1b56929f6b1006a42297ed70f983dcc6-XXX&enrichSource=Y292ZXJQYWdlOzMzNDM0MTM5MjtBUzo3ODYwMzE3MzMzOTU0NTdAMTU2NDQxNTk3NzQxNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hossain_Shahriar?enrichId=rgreq-1b56929f6b1006a42297ed70f983dcc6-XXX&enrichSource=Y292ZXJQYWdlOzMzNDM0MTM5MjtBUzo3ODYwMzE3MzMzOTU0NTdAMTU2NDQxNTk3NzQxNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Kennesaw_State_University?enrichId=rgreq-1b56929f6b1006a42297ed70f983dcc6-XXX&enrichSource=Y292ZXJQYWdlOzMzNDM0MTM5MjtBUzo3ODYwMzE3MzMzOTU0NTdAMTU2NDQxNTk3NzQxNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hossain_Shahriar?enrichId=rgreq-1b56929f6b1006a42297ed70f983dcc6-XXX&enrichSource=Y292ZXJQYWdlOzMzNDM0MTM5MjtBUzo3ODYwMzE3MzMzOTU0NTdAMTU2NDQxNTk3NzQxNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kai_Qian12?enrichId=rgreq-1b56929f6b1006a42297ed70f983dcc6-XXX&enrichSource=Y292ZXJQYWdlOzMzNDM0MTM5MjtBUzo3ODYwMzE3MzMzOTU0NTdAMTU2NDQxNTk3NzQxNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kai_Qian12?enrichId=rgreq-1b56929f6b1006a42297ed70f983dcc6-XXX&enrichSource=Y292ZXJQYWdlOzMzNDM0MTM5MjtBUzo3ODYwMzE3MzMzOTU0NTdAMTU2NDQxNTk3NzQxNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Kennesaw_State_University?enrichId=rgreq-1b56929f6b1006a42297ed70f983dcc6-XXX&enrichSource=Y292ZXJQYWdlOzMzNDM0MTM5MjtBUzo3ODYwMzE3MzMzOTU0NTdAMTU2NDQxNTk3NzQxNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kai_Qian12?enrichId=rgreq-1b56929f6b1006a42297ed70f983dcc6-XXX&enrichSource=Y292ZXJQYWdlOzMzNDM0MTM5MjtBUzo3ODYwMzE3MzMzOTU0NTdAMTU2NDQxNTk3NzQxNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad_Rahman83?enrichId=rgreq-1b56929f6b1006a42297ed70f983dcc6-XXX&enrichSource=Y292ZXJQYWdlOzMzNDM0MTM5MjtBUzo3ODYwMzE3MzMzOTU0NTdAMTU2NDQxNTk3NzQxNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad_Rahman83?enrichId=rgreq-1b56929f6b1006a42297ed70f983dcc6-XXX&enrichSource=Y292ZXJQYWdlOzMzNDM0MTM5MjtBUzo3ODYwMzE3MzMzOTU0NTdAMTU2NDQxNTk3NzQxNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Florida_International_University?enrichId=rgreq-1b56929f6b1006a42297ed70f983dcc6-XXX&enrichSource=Y292ZXJQYWdlOzMzNDM0MTM5MjtBUzo3ODYwMzE3MzMzOTU0NTdAMTU2NDQxNTk3NzQxNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad_Rahman83?enrichId=rgreq-1b56929f6b1006a42297ed70f983dcc6-XXX&enrichSource=Y292ZXJQYWdlOzMzNDM0MTM5MjtBUzo3ODYwMzE3MzMzOTU0NTdAMTU2NDQxNTk3NzQxNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Md_Arabin_Islam_Talukder?enrichId=rgreq-1b56929f6b1006a42297ed70f983dcc6-XXX&enrichSource=Y292ZXJQYWdlOzMzNDM0MTM5MjtBUzo3ODYwMzE3MzMzOTU0NTdAMTU2NDQxNTk3NzQxNw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

DroidPatrol: A Static Analysis Plugin For Secure Mobile
Software Development

Md Arabin Islam Talukder1, Hossain Shahriar1, Kai Qian1, Mohammad Rahman2, Sheikh Ahamed3

, Fan Wu4, Emmanuel Agu5
1Kennesaw State University, Marietta, GA, USA

2Florida International University, Miami, FL, USA
3Marquette University, Milwaukee, WI, USA

4Tuskegee University, Tuskegee, AL, USA
5Worcester Polytechnic Institute, Worcester, MA, USA

mtalukd1@students.kennesaw.edu, {hshahria, kqian}@kennesaw.edu, marahman@fiu.edu
sheikh.ahamed@mu.edu, fwu@tuskegee.edu, emmanuel@wpi.edu

Abstract - While the number of mobile applications are

rapidly growing, these applications are often coming with
numerous security flaws due to the lack of appropriate coding
practices. Security issues must be addressed earlier in the
development lifecycle rather than fixing them after the
attacks because the damage might already be extensive. Early
elimination of possible security vulnerabilities will help us
increase the security of our software and mitigate or reduce
the potential damages through data losses or service
disruptions caused by malicious attacks. However, many
software developers lack necessary security knowledge and
skills required at the development stage, and Secure Mobile
Software Development (SMSD) is not yet well represented in
academia and industry. In this paper, we present a static
analysis-based security analysis approach through design and
implementation of a plugin for Android Development Studio,
namely DroidPatrol. The proposed plugins can support
developers by providing list of potential vulnerabilities early.

Keywords—Android, Secure software development,
Static analysis, Tainted data flow, SQL Injection.

I. INTRODUCTION

 With the increased demands of mobile applications in
recent years, we have also witnessed numerous major cyber-
attacks, resulting in stolen personal credit card numbers,
leakage of classified information vital for national defense,
industrial espionage resulting in major financial losses, and
many more consequences. Hackers have managed to make
secure computing a more difficult task. Therefore, there is a
greater need for not only including the concept of
cybersecurity but also the secure software development in
the training of computer science, information technology,
and related field professionals. The rapid growth of mobile
computing also results in a shortage of professionals for
mobile software development, especially for Secure Mobile
Software Development (SMSD) professionals, and
insufficient tool support to develop secure mobile
applications [12, 13, 14].

 If all or most of the possible vulnerabilities can be
addressed and fixed for a mobile software during its
development phase, the potential attack space will be
minimized. Many open source static Java code analysis

tools help developers to maintain and clean up the code
through the analysis performed without actually executing
the code such as Eclipse IDE [15], IntelliJ IDE [16], and
FindBugs Plugin [17]. These tools focus on finding
probable bugs such as inconsistencies, helping improve the
code structure, conform source code to guidelines, and
provide quick fixes. The security vulnerability checking is
not their major task.

 Source code analysis tools, also referred to as Static
Application Security Testing (SAST) Tools, are designed to
analyze source code and to help to find security flaws with
a high confidence that what's found is indeed a flaw (readers
can see the survey [8] for list of exhaustive state-of-the art
tools). However, there is no tool that can just automatically
finds all flaws and can guarantee all detecting are positive
or never miss any potential flaws [18]. Currently, there is no
tool available that would allow mobile application
developers to analyze their project source code for detecting
security flaws within the development environment (e.g.,
Android Development Studio).

 In this paper, we design and implement DroidPatrol, a
plugin to be integrated with the Android Development
Studio to perform tainted data flow–based static analysis.
DroidPatrol allows developers to specify a list of sources
and sinks and enable them to see the possible paths within
the source code and suggestion of corresponding fixes.

This paper is organized as follows. Section II discusses
related work. Section III provides overview of tainted data
flow analysis, followed by the design of DroidPatrol.
Finally, Section IV concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Background on Static anlaysis

Static program analysis generally involves an
automated tool that takes as input the source code (or object
code in some cases) of a program, examines this code
without executing it, and yields results by checking the
code structure, the sequences of statements, and how
variable values are processed throughout the different

function calls. The main advantage of static analysis is that
all the code is analyzed [8]. This differs from dynamic
analysis where portions of code could only be executed
under some specific conditions that could never be met
during the analysis phase. A typical static analysis process
starts by representing the analyzed app code to some
abstract models (e.g., call graph, control-flow graph, or
UML class/sequence diagram) based on the purpose of
analysis.

A control-flow analysis is a technique to show how
hierarchical flow of control within a given program are
sequenced, making all possible execution paths of a
program analyzable [8]. A data-flow analysis [31] is a
technique to compute at every point in a program a set of
possible values. This set of values depends on the kind of
problem that has to be solved using data-flow analysis. The
analysis allows us to identity the set of definitions
reachable at every program point. A program usually starts
with a single entry point. A quick inspection of the main
entry method’s code can list the method(s) that it calls.
Then, iterating this process on the code of the called
methods leads to the construction of a directed graph,
commonly known as the call graph in program analysis.
Our work relies on the call graph generated by Soot
analyzer [5], which is a popular tool also used by others.

B. Related work

Below, we discuss a number of commonly available
tools for static and dynamic analysis of android
applications. None of them allows developers to integrate
the tool in Android Development Studio to streamline the
identification of common Android Security bugs and fix
them early. Readers are suggested to see the detailed survey
[8] for other available tools for statically analyzing Android
Applications for security bug identification.

FlowDroid is an open source Java based static analysis
tool that can be used to analyze Android applications for
potential data leakage. FlowDroid is a context, object
sensitive, field, flow, and static taint analysis tool that
specifically models the full Android lifecycle with high
precision and recall [23]. The tool can detect and analyze
data flows, specifically an Android application’s bytecode,
and configuration files, to find any possible privacy
vulnerabilities, also known as data leakage [24]. It is not
intended to analyze malware [19]. However, it cannot find
common security bugs in Android such as SQL Injection,
output encoding, Intent leakage, and lack of secure
communication.

Cuckoo is a widely used malware analysis tool based
on dynamic analysis (i.e., it runs an application under test
in a controlled emulator). It is capable of methodically
examining multiple variants of Android malware
applications through controlled execution into virtual
machines that monitor the behaviors of the applications
[21]. It comprises a host that is responsible for the sample
execution and the analysis in which the guests run. When
the host has to launch a new analysis, it chooses the guests
and uploads that sample as well as the other components
that are required by the guest to function [20]. Once the

analysis has completed, the analyzer refers the results of the
analysis to the ResultServer, which in turn will implement
whichever processing modules are configured (the modules
used to populate the product of the analysis, the report) and
produce the report [22].

Yanick et al. [11] detected logic bombs in Android
applications using a number of static analysis tools,
including FlowDroid, Kirin, TriggerScope, and
DroidAPIMiner. A logic bomb is an unauthorized software
that changes the output of the Android application or does
applications actions that are not intended. Among the other
analysis tools, FlowDroid had the highest false positive
percentage, and second lowest false negative percentage.

 The DroidSafe project [9] developed effective program
analysis techniques and tools to uncover malicious code in
Android mobile applications. The core of the system is a
static information flow analysis that reports the context
under which sensitive information is used. For example,
Application A has the potential to send location
information to network address. DroidSafe reports
potential leaks of sensitive information in Android
applications. It still suffers from imprecision due to 1)
unacceptable numbers of false positive alarms, and 2) the
use of unsound techniques that may leave errors uncovered.

Many other efforts have been made to enhance the
secure software development in recent years. Application
Security IDE (ASIDE) plug-in for Eclipse can warn
programmers of potential vulnerabilities in their code and
assists them in addressing these vulnerabilities. The tool is
designed to improve awareness and understanding of
security vulnerabilities and to increase utilization of secure
programming practices. ASIDE addresses input validation
vulnerabilities, output encoding, authentication and
authorization, and several race condition vulnerabilities [1-
3]. However, it cannot identify Android specific security
flaws. Further, ASIDE only works in the Java Eclipse IDE
and cannot support Android Development Studio.

 Android has a complex communication system for
sharing and sending data in both inter and intra
applications. Simple static analysis usually cannot satisfy
further requirement. Malicious applications may take
advantage of built-in feature (e.g., Intent object broadcast
by victim applications can be intercepted by a malware
running on the same device) to avoid detection. Recently
many tools are developed to perform taint-based static
analysis checking, like Findbugs and DidFail [10]. They
are not capable of detecting all known Android security
bugs based on OWASP guidelines [7]. Detection of
potential taint flows can be used to protect sensitive data,
identify leaky apps, and identify malware.

III. DROIDPATROL DESIGN AND IMPLEMENTATION

 DroidPatrol (see Figure 1) is designed based on Soot [5]
and Jimple [4]. Soot is one of the most used static analyzers
for Java-based applications. Android application is based
on Java, so we used some basic concept and static analysis
library APIS of Soot. Apart from Soot, DroidPatrol
requires an input application file (e.g., app-debug.apk),

dependent libararies (e.g., android.jar) and a list of sources
and sinks (e.g., SourceAndSink.txt) file to perform the flow
analysis. It first decompiles the input apk file followed by
generating and analyzing call graphs (between method

definition and method call locations) to find out possible
data leakages.

Figure 1: Architecture of DroidPatrol

A. Scope of DroidPatrol

DroidPatrol plugin is intended to identify Android
security bugs based on the on most current OWASP 2017
mobile top 10 mobile security risks [7] for the category of
SQL injection, unintended data leakage, insecure
communication, insecure data storage vulnerability
detectors. Table 1 shows examples of data flow leakage,
list of sources and sinks for extraneous functionality,
improper platform usage, insecure data storage, insecure
communication, and insecure authorization. DropidPatrol
can recognize SQL injection vulnerability and data leakage
in mobile applications, which may face the threat of
potential malicious code injection, and then issue a warning
on the code line. Following the provided options,
developers can enforce a new secure statement to replace
the unsecure statement. A built package can also be loaded
into the Android Studio IDE, which will result in parsing
Android java source code, identifying specific API calls,
warning potential vulnerabilities, recommending code
statements for replacement.

Table 1: Example of Detector, Sources and Sinks

Example of Flow
Detector

Source (example) Sink (example)

Extraneous
Functionality

Bundle class and Intent
class

Log class

Improper Platform
Usage

View class HTTP class

Insecure Data Storage SQLite database class,
Shared Preferences class

Rest API,
SmsManager class

Insecure
Communication

Intent, Bundle class Broadcast class

Insecure Authorization EditText class Backend Rest Api,
SmsManager class

For many Android security vulnerabilities and flaws on
the top 10 mobile risks by OWASP and other new
identified unlisted flaws we need to develop our own
customized detectors. A practical challenge in static
analysis is to control the rate of false alarms while not

missing any (potentially dangerous) behaviors of
applications. This is especially significant due to a number
of features of Android.

First, Android is an event-based system. The control
flow is driven by events from an application environment
that can trigger various method calls. How to capture all the
possible control flow paths in this open and reactive system
while not introducing too many spurious paths (false
alarms) is a significant challenge.

Second, the Android runtime consists of a large base of
library code that an app depends upon. The event-driven
nature makes a large portion of the control-flow involve the
Android library. While fully analyzing the whole library
code could improve the analysis’ faithfulness, it may also
be prohibitively expensive (or imprecise).

Third, Android is a component-based system and
makes extensive use of inter-component communication
(ICC). For example, a component can send an Intent to
another component. The target of an Intent could be
specified explicitly in the Intent or be implicit and decided
at runtime. Both control and data can flow through the ICC
mechanism from one component to another. Capturing all
ICC flows accurately is a major challenge in static analysis.
Before we discuss our design (in section C) addressed these
challenges, we provide a working example of SQL
Injection detection using DroidPatrol in the next section.

B. An Example Application – Data Leak Detection with
DroidPatrol

SQL injection is a common security vulnerability in mobile
applications leading to data leakage. It works by adding
user supplied data to a query string which leads to the
alteration of SQL queries leading hackers to access to
unauthorized data and bypassing logins. SQL Injection is
usually used to attack Web Views or a web service.
However, it can also be used to attack Activities in Android
applications.

Consider the code segment in Figure 2. Here, a
SELECT query is formed with user provided user id (uid)
and password (pwd) variables in the method isValidUser().

The input is obtained from username and password text
boxes (which we mark as source) in the onCreate() method.
After the query runs, the output is the name and grade,
which are displayed by setting as text to textboxes (data
sink) in the isValidUser() method.

public void onCreate(Bundle savedInstanceState){
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main);
 username = findViewById(R.id.textView1); // source
 password = findViewById(R.id.textView1); // source
}
public boolean isValidUser(){
 …
 uid = findViewById(R.id.editText1); //retrieving id
 pwd = findViewById(R.id.editText2); //retrieving password
 …
 String qry = "select name, grade from users where user_id= '"
+ uid + "' and password = '" + pwd +"'";
 SQLiteDatabase db;
 ... … …
 Cursor c = db.rawQuery (qry, null);
 name.setText(c.getString(columindex1)); //sink
 grade.setText(c.getString(columnindex2)); //sink
 return c.getCount() != 0;
}

Figure 2: Example of vulnerable code

Assume, user id is “jdoe”, pwd is “secret”. Then, the qry is
select * from users where password= ‘jdoe’ and pwd
=’secret’. Since, the input is not filtered, an attacker can
exploit the application by providing malicious inputs for
uid value as ’ or 1=1 – , whereas pwd value as blank. The
qry would be select * from users where password=’’ or 1=1
-- ’and pwd=’’. The -- symbol means comment by query
engine. Thus, the query is changed to select * from users
where password='' or 1=1. This query will be evaluated as
true and select all information (name and grade) from the
table users as opposed to one entry matching with the uid
and pwd. This way, an attacker can bypass authentication.

 To determine the tainted data flow from every possible
point of a program, dataflow analysis can be used. Data
flow analysis works on a fixed abstraction and the
outcomes are often a) flat to symbolic over-approximation,
and b) do not show instance of traces defining paths from
the origin to sinks for a given vulnerability [6].

 We first define the sources and the sinks (see Figure 3).
Source means location where input data may be obtained
from external inputs such as a user or database query. For
example, in Figure 3, the source is defined as database
Cursor object. This object allows a program to retrieve
data. Data obtained from source can be transferred to a third
party via SMS messaging. In Android, to send an SMS
message, SmsManager object can be used which
subsequently requires SEND_SMS permission to be listed
in the manifest file. Figure 2 shows both SmsManager class
and SEND_SMS permission listed in the sink list. A
developer can include other possible sources and sinks
based on secure programming practices and OWASP
guidelines. This allows the flexibility to not only detecting
new security bugs, but also reducing false positive warning.

<android.database.Cursor: java.lang.String getString(int)> ->
SOURCE

<android.telephony.SmsManager: void
sendTextMessage(java.lang.String,java.lang.String,java.lang.String,a
ndroid.app.PendingIntent,android.app.PendingIntent)>
android.permission.SEND_SMS -> _SINK_

Figure 3: Source and sink definition

 The tool provides us a list of dataflow where
information flow between sources and sinks are displayed
in the log output of the Android IDE (Figure 4).

Figure 4: A sample result from DroidPatrol analysis

We show an example of highlighted code segment in the
project source code when enabling the DroidPatrol.
Moving the cursor on the highlighted method calls provide
suggestions to fix the code for input validation before
reaching to the sinks. Figure 5 shows that DroidPatrol
detects code fragment related to data leak. It also shows the
summarized output of the data flow analysis. It provides a
list of possible sinks of the data then looks for possible
source for each sink.

Figure 5: A Sample screenshot of DroidPatrol plugin
highlighting vulnerable code

IV. CONCLUSIONS

Currently, there is no available plugins for Android
Development Studio that can be integrated for static data

flow analysis. In this paper, we developed a plugin tool
named DroidPatrol. We plan to make the tool open source
for public use in the near future. The plugin can perform
tainted data flow analysis of application as developers
implement mobile applications and wish to detect various
security bugs leading to privacy and data leaks based on
OWASP guidelines. Our tool can highlight the code that
should be paid attention for removing bugs. The plugin is
lightweight as it integrates seamlessly with Android Studio
without intensively consuming more system resources.

V. ACKNOWLEDGEMENTS

The work is partially supported by the National Science
Foundation under award: NSF proposal 1723586, 1723578,
1636995, 1438858, and KSU OVPR Award 2018-19. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] Michael Whitney, Heather Richter Lipford, Bill Chu, and
Jun Zhu. Embedding Secure Coding Instruction into the
IDE: A Field Study in an Advanced CS Course. In
Proceedings of the 46th ACM Technical Symposium on
Computer Science Education (SIGCSE '15), Minneapolis,
MN, USA, 2015, pp. 60-65

[2] Michael Whitney, Heather Richter Lipford, Bill Chu, and
Tyler Thomas. "Embedding Secure Coding Instruction into
the IDE: Complementing Early and Intermediate CS Courses
with ESIDE" In press, Journal of Educational Computing
Research, 2017

[3] J. Xie, H. Lipford, B. Chu, Evaluating interactive support for
secure programming, Proceeding of SIGCHI Conference on
Human Factors in Computing Systems, Austin, TX, 2012,
pp. 2707-2716.

[4] P. Pominville, Using Jimple Parse, March 200,
https://www.sable.mcgill.ca/soot/tutorial/jimpleParser/inde
x.html

[5] Soot Java Optimization Framework, Accessed from
http://sable.github.io/soot/

[6] Katerina Goseva-Popstojanovaa, Andrei Perhinschib, On the
capability of static code analysis to detect security
vulnerabilities, community.wvu.edu/~kagoseva/Papers/IST-
2015.pdf

[7] Projects/OWASP Mobile Security Project - Top Ten Mobile
Risks,
https://www.owasp.org/index.php/Projects/OWASP_Mobil
e_Security_Project_-_Top_Ten_Mobile_Risks

[8] Li Li, Tegawend´e F. Bissyand´e, Mike Papadakis, Siegfried
Rasthofer, Alexandre Bartela, Damien Octeauc, Jacques
Kleina, Yves Le Traona, “Static Analysis of Android Apps:
A Systematic Literature Review”, Information and Software
Technology, Volume 88, August 2017, Pages 67-95.

[9] DroidSafe, https://mit-pac.github.io/droidsafe-src/
[10] Karan Dwivedi Hongli Yin Pranav Bagree Xiaoxiao Tang

Lori Flynn William Klieber William SnavelyDidFail:
Coverage and Precision Enhancement

[11] Fratantonio, Y., Bianchi, A., Robertson, W., Kirda, E.,
Kruegel, C., & Vigna, G. (2016). TriggerScope: Towards
Detecting Logic Bombs in Android Applications. 2016 IEEE
Symposium on Security and Privacy (SP).
doi:10.1109/sp.2016.30

[12] Hossain Shahriar, Kai Qian, Md Arabin Islam Talukder,
Nidhibahen Patel and Dan Lo, Mobile Software Security
Risk Assessment with Program Analysis, Proc. of the 23rd

IEEE Pacific Rim International Symposium on Dependable
Computing (PRDC), Taipei, Taiwan, December 2018, 2 pp.

[13] Kai Qian, Dan Lo, Hossain Shahriar, Lei Li, Fan Wu, Prabir
Bhattacharya, Learning database security with hands-on
mobile labs, Proc. of IEEE Frontiers in Education
Conference (FIE), Oct 2017, pp. 1-6.

[14] Kai Qian, Hossain Shahriar, Fan Wu, Lixin Tao, Prabir
Bhattacharya, Labware for Secure Mobile Software
Development (SMSD) Education, Proceedings of the 2017
ACM Conference on Innovation and Technology in
Computer Science Education, March 2017, pp. 375-375.

[15] Eclipse IDE, https://www.eclipse.org/ide/
[16] IntelliJ IDEA, https://www.jetbrains.com/idea/
[17] FindBugs in Java Programs, http://findbugs.sourceforge.net/
[18] Hossain Shahriar et al., Mitigating program security

vulnerabilities: Approaches and challenges, ACM
Computing Surveys (CSUR), Vol. 44, Issue 3, Article 11,
June 2012.

[19] Fratantonio, Y., Bianchi, A., Robertson, W., Kirda, E.,
Kruegel, C., & Vigna, G. (2016). TriggerScope: Towards
Detecting Logic Bombs in Android Applications. 2016 IEEE
Symposium on Security and Privacy (SP).
doi:10.1109/sp.2016.30

[20] Underwood, K., & Locasto, M. E. (2016). In Search of
Shotgun Parsers in Android Applications. 2016 IEEE
Security and Privacy Workshops (SPW), 140-155.
doi:10.1109/spw.2016.41

[21] What is Cuckoo? — CuckooDroid v1.0 Book. (n.d.).
Retrieved from https://cuckoo-
droid.readthedocs.io/en/latest/introduction/what/

[22] Installation — CuckooDroid v1.0 Book. (n.d.). Retrieved
from https://cuckoo-
droid.readthedocs.io/en/latest/installation/

[23] Golam Sarwar Babil ; Olivier Mehani ; Roksana Boreli ;
Mohamed-Ali Kaafar. (2013). On the effectiveness of
dynamic taint analysis for protecting against private
information leaks on Android-based devices. 2013
International Conference on Security and Cryptography
(SECRYPT) (pp. 1-8). Reykjavik, Iceland: IEEE.

[24] Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A.,
Klein, J., Mcdaniel, P. (2013). FlowDroid: Precise Context,
Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design
and Implementation - PLDI 14, 259-269.
doi:10.1145/2594291.2594299

View publication statsView publication stats

https://www.researchgate.net/publication/334341392

