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Abstract 

Recent advances in machine learning (ML) algorithms have motivated their use for automated Decision 
Support Systems (DSS). In healthcare domain, ML-based DSS enable providers to analyze large amounts 
of patient data and complex images quickly. However, providers find it difficult to interpret the predictions 
due to ‘black box’ ML reasonings. To facilitate meaningful interpretations, ML-based DSS should include 
explanation facilities as recommended in information systems (IS). For example, a wound care DSS should 
allow providers to see the reasoning based on wound location and presence of necrotic when it recommends 
referral. We present an ML-based DSS that provides global (reliance on the domain knowledge) and local 
(reasoning for predicting an instance) explanations for wound care decisions. We use Shapley values for a 
logistic regression (trained on wound visual features) which outperformed other classifiers in prediction of 
referral decisions (F-1 =0.938) and demonstrate its applicability in a wound care use-scenario. Finding 
suggest similar approach can be applied for other complex decision problems.  
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Introduction 

Clinical applications of artificial intelligence (AI) and ML techniques are receiving significant attention as 
medical professionals continue to investigate the accuracy of their diagnostic ability (Holzinger et al. 2019). 
In recent years, ML-based diagnostic systems have been developed to account for the errors in extremely 
ambiguous medical conditions (Latif et al. 2019) such as classifying age-related macular degeneration and 
diabetic macular edema (Kermany et al. 2018), diagnosing breast cancer (Wang et al. 2016), predicting the 
chance of developing pressure ulcers in hospitalized patients (Alderden et al. 2021) as well as patients at 
home (Orciuoli et al. 2020). Some of these diagnostic systems also assist medical professionals in their 
decision-making (Fatima et al. 2017). For instance, objective decisions about the  severity level of Chronic 
Kidney Disease (CKD) were made possible based on predictions that use real-time data collected from 
patients’ wearable IoT devices (Lakshmanaprabu et al. 2019). However, many of these ML methods are very 
complex and lack transparent (layman’s) explanations for their results (Emmert‐Streib et al. 2020).  

The complexity usually comes from the high‐dimensional input data on which these algorithms rely. As a 
result, even the cutting-edge ML DSS with high prediction power face adoption and usability challenges in 
real world medical decision-making tasks. The biggest failure is attributed to inability of such ML-based 
DSS in explaining their predictions in simple, context specific terms meaningful to less ML-savvy providers 
who constantly question the reasoning behind the ML predictions. In fact, recent regulations such as 
General Data Protection Regulation (in effect since 2018) force a mandatory inclusion of explanations as 
well as the right to challenge the decision outcome of their predictions (Kim et al. 2020).  

In DSS literature, using explanations has been recommended since the advent of DSS (i.e., expert systems) 
to bring trust into the final prediction outcomes of DSSs (Kim et al. 2020; Nunes et al. 2017). The less 
intuitive and informative these prediction outcomes are, the less trustworthy they become for users who 
initially plan on adopting them. To make outcomes of a DSS intuitive, IS literature recommends 
supplementing the predictions outcome with one or more (1) definition explanations that supply descriptive 
or terminological information, (2) justifications explanations that rationalize part of the ML reasoning 
process by linking it to the global (domain) knowledge, (3) strategic explanations which explain the DSS 
overall problem-solving approach, and (4) rule-tracing explanations that explain why certain decision 
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instances were or were not made by referring to the chunk of input data (Gregor and Benbasat 1999). For 
medical users who need to know why a certain patient has a certain (e.g., 30%) chance of developing an 
ulcer, justification and rule-tracing explanations are highly preferred (Darlington 2011; Holzinger et al. 
2019). These explanations are commonly referred to as global and local explanations (Plumb et al. 2018). 

While global explanations describe the model as a whole, in terms of which explanatory variables most 
determine its predictions, local explanations aim at interpreting individual predictions, at the single 
statistical unit level (Giudici and Raffinetti 2020). Since most real datasets have both continuous and 
discontinuous effects (due to mixture of categorical and numerical features), it is integral to design 
explanation systems that can capture, or are at least aware of, both types of effects (Plumb et al. 2018). This 
is typical for complex medical prediction tasks where data is noisy and highly non-linear (Shirwaikar et al. 
2019). A ML-based wound DSSs are electronic systems designed to predict patient-specific assessments or 
recommendations by comparing patient wound characteristics with a wound knowledge base to directly 
assist wound care providers professionals in clinical decision such ad type of dressings, risk of ulceration, 
etc. at the time of decision-making and can be part of normal clinical workflow (Araujo et al. 2020). For 
example, in chronic wound decision making generating a decision for a wound requires consideration of 
one or more conditions (e.g., presence and amount of necrosis or unhealthy tissue and healthy granulation 
tissue, etc.) that may collectively influence the decision outcome. When a DSS is locally interpretable or 
equipped with rule-trace explanation, it allows providers to trace back the path of the predicted decision for 
a specific wound instance and to see which wound conditions were emphasized by the ML model during 
that instance (e.g., wound is located on plantar forefoot and is necrotic therefore it must be referred to 
wound clinic for debridement). Additionally, when DSS is complemented with a global explanation (that 
justifies model reliance on the domain knowledge or features), it can also display the overall wound 
conditions that are commonly known for triggering a sever wound needing specialist referral. Such 
explanations are needed to ensure that the prediction power of ML-based medical DSS is not underutilized. 

We propose an explanation facility using Shapley values (from game theory that determines the 
contribution of features to the wound decision predictions by considering all possible combinations of 
healing features) for a wound care DSS tool that uses ML algorithms to predict care decisions based on 
visual wound features extracted from clinical images.  The explanation facility provides global and local 
explanations for easier interpretation of decision predictions. We demonstrate how our ML-based DSS 
achieve high performance (F-1= .938) and high interpretability (Simply explainable wound care outcomes) 
through rigorous evaluations of our ML classifiers (i.e., cross validation, hyperparameter tuning and 
oversampling techniques) for a chronic wound decision-making scenario in rural underserved areas. Our 
main contribution is the application of state-of-the-art explainable solutions for a ML-based DSS assisting 
non-specialist providers in making complex chronic wound treatment decisions. These explanations are 
designed to help non-specialist providers avoid errors when interpreting the decision predictions. Our 
approach will guide future IS researchers in developing similar explainable methods for their predictive 
DSS solutions. 

Background 

Use-scenario 

Chronic wounds or ulcers affect 6.5 million Americans (Fife 2012) and can be extremely difficult to treat 
(Han 2017) with costs of $32 billion annually (Nussbaum 2018). Untreated or inappropriately treated 
chronic wounds (Kim 2013; Wu 2010) can endanger patients’ lives (Järbrink 2017) or result in undesired 
healing outcomes with high risk of amputation (Jeffcoate 2004) following limited quality of life. Thus, 
patients must receive appropriate treatment to maintain normal healing process (Frykberg 2015). 
Unfortunately, chronic wound patients in remote underserved areas do not always have access to evidence-
based wound care services or specialty wound clinics (Benskin 2013). These patients usually receive their 
routine care from non-specialist providers who have limited chronic wound assessment experience 
(McIntosh 2008). Even though published chronic wound management guides are abundant, non-specialist 
providers face major decision uncertainties when it comes to a particular wound (Christie 2018).  

We developed a ML-based DSS solution to support these providers. Our smartphone app equipped a 
reasoning engine, allows the non-specialist provider (visiting a patient in rural underserved area) to capture 
a photo of the patient’s wound after the initial examination. Then, the wound photo is processed using 
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image segmentation algorithms for tissue analysis and prediction of wound severity score (PWAT) that is 
validated for use in photo-based wound assessment (Thompson et al. 2013). Next, the non-specialist 
provider selects the presence of basic wound features that impede healing (i.e., ischemia, rolled edge, etc.) 
as well as the wound location. Finally, the ML-based prediction model predicts a decision outcome as 
whether to refer the wound patient to a wound specialist or advise on continuing with current treatment 
plan (once, PWAT, location and impeding features are inputted and a decision on Referral or Non-referral 
is generated). These decisions will be predicted based on patient’s wound conditions (e.g., necrotic, or 
unhealthy tissue amount, epithelium & granulation healthy tissues, wound location, etc.) during each visit. 
Furthermore, the DSS will provide explanations that allow the visiting nurse to locally track and interpret 
patient’s specific wound conditions and see how much model relied on global domain specific features 
(Wound bed, edge, and skin features) at the time of care.  

The need for explanations 

Explanations in IS are intended for any recommendation system that is designed to provide users decision 
support in any given decision context. ML explanations can be based on transparency of input data or the 
ML model itself. Data transparency ensures that training process for classification was done properly and 
poor results, if any, are not due to poorly labeled data (He 2019). Model transparency, on the other hand, 
ensures that a certain decision path predicted by medical ML-based DSS is interpretable, logical and 
trustworthy (He 2019), and conforms with ethical requirements and medical regulations (Ahmad 2018). 
Hence, it is important for a ML-based medical DSS to provide explanations based on model transparency 
using both local and global techniques. The global techniques have the advantage of being generalizable to 
the entire population while local interpretability techniques focus on giving explanations at the level of 
instances (Elshawi et al. 2019). Both methods can be equally valid and effective for assisting providers 
medical decision process. However, the  providers will always remain to hold the final say on accepting or 
rejecting the outcome of the ML-based DSS and its explanations using their domain expertise (Elshawi et 
al. 2019). 

Prior work 

Several AI and ML-based studies explored the use of explanation techniques for medical diagnostic tasks. 
One study (Schulz et al. 2019) trained a diagnostic classifier (healthy vs. diseased) and extracted instance-
wise explanations for the classifier's decisions on identification of disease subtypes and corresponding 
biomarkers that can substantially improve clinical diagnosis and treatment selection. The authors used 
game-theory Shapley values (determining the relative contribution of variables to the predictions by 
considering all possible combinations of variables that maximize payoff) to generate instance-wise 
explanations for the predictions of the classifier. In another study Athanasiou et al. (2020 developed and 
evaluated an explainable risk support model for predicting the fatal or non-fatal Cardiovascular Disease 
(CVD) incidence in individuals with Type 2 diabetes. Their approach was based on the XGBoost machine 
learning classification algorithm and Shapley explanations (Zihni et al. 2020) that support calculation of 
the 5-year CVD risk and the generation of instance-based explanations on the model's decisions. Although 
these studies demonstrated the validity of their explanations approaches (visually projecting the most 
important features or components involved in predictions), they targeted users already knowledgeable in 
Machine Learning. Specifically, they failed to provide actionable (directly usable) explanations that 
facilitate the understanding, and thus objective decision making, of non-specialist providers who are not 
familiar with ML jargon. Additionally, these type of explanations generally describe “why” a prediction is 
made but lack in explaining “how” the decision is made (Mohseni et al. 2018). In the context of chronic 
wound management, we have not found any study that used explanations for users especially non-specialist’ 
providers who are typically have limited knowledge of ML. Majority of the proposed ML-based methods for 
chronic wound management focused on wound tissue (healthy granulation and unhealthy necrosis) 
segmentation (Chakraborty 2016), skin tear classification (Nagata et al. 2021), and wound size 
measurement using smartphone camera (Lucas et al. 2020).  

To address the above-mentioned gaps, and in response to recent calls encouraging explainable ML for 
healthcare (Ahmad 2018; Holzinger et al. 2020; Mohseni et al. 2018), our ML-based wound care DSS 
solution generates transparent explanations (He 2019; Holzinger 2018; Holzinger 2017) that show how 
each wound care decision is predicted. As mentioned earlier, extent wound care decision guidelines exist 
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for bedside wound care (Franks 2016; Kottner 2019) with narrative explanations about assessment 
procedures and generalized recommendations about which decision to take. However, their use is too 
limited to be considered for actionable and objective wound care decisions. Hence, alternative solutions 
using smartphone and ML algorithms can enhance wound healing, reduce costs (Nasi 2015) and enhance 
simple interpretation of predicted decisions for non-specialists users. 

Methodology 

Data collection and preparation 

Figure 1 presents our approach to training our explainable ML classifiers. First, we collected 2056 raw 
images and used the only validated and photo-based wound scoring tool called PWAT (Thompson et al. 
2013) and its image criteria to exclude bad quality images and finally included 375 wound images for 
training. PWAT scores eight attributes of wounds, (1) size, (2) depth, (3,4) type and amount of necrotic 
tissue, (5,6) type and amount of granulation tissue, (7) wound edges and (8) peri-ulcer skin viability 
(Thompson et al. 2013). Our local wound experts (plastic surgeon and nurse practitioner) labeled these raw 
wound images with referral and non-referral decisions. Additionally, we created evidence-based labels 
using standard wound care decision-making guidelines. Finally, we applied majority voting rule across all 
the given labels to create our final decision labels. Since the focus of this paper is the training and evaluation 
of explainable ML classifiers, we will refer the reader to our prior publications where we provide a detailed 
description of our approach for data collection, preparation, and labeling as well as the performance of our 
predictions (BlindReview). 

 
Figure 1. Interpretable ML decision support development process 

Feature selection 

We included wound severity measure PWAT which scores a wound from 0 (or healing) to 32 (or extremely 
bad) conditions. We also searched for additional wound features within wound care guidelines and after 
removing uninformative features (using mutual information and Pearson correlation) we prepared our final 
dataset including PWAT total score, wound location, bed, and edge features. Our decision classes are 
“Referral” for when a wound is severely damaged or “Non-referral” for when the wound patient may 
continue with current plan due to healing status. These decisions were derived from our original decisions 
based on standard of wound care (i.e., continue with current treatment, request change from a wound 
specialist or refer patient to a wound specialist). This was done since for medical classification problems 
the correct diagnosis in a particular case and what constitutes best practice can be controversial (Char 
2018). Otherwise, training ML classifiers can be challenging due to difficulty of data integration (Holzinger 
2018), the fact that wounds corresponding to different decisions can appear quite similar (fuzzy decision 
boundaries), and the multi-label nature of decision classes (i.e. more than one correct possible decision 
path exists for a wound. For example, for a seemingly large open wound a plastic surgeon may suggest skin 
grafting while a vascular surgeon may recommend vacuum closure. We expected this to be an issue thus 
experimented with binary classification for more objective, interpretable decisions.  

ML classifiers 

Extant literature exists on types of ML classifiers suitable for supporting medical decisions where 
predictions are costly. To build our DSS we used Random Forest (RF), Support Vector Machine (SVM), 
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Logistic Regression (LR) and Light Gradient Boosting Model (LGBM) as a novel gradient boosting decision 
tree algorithm (Ke 2017; Sun 2020). Prior classification studies achieved high prediction accuracy (i.e., 
above 80%) when using these classifiers (Portugal et al. 2018). For tuning the hyperparameters of these 
classifiers we used Bayesian Optimization search from open-source Ray tune-Sklearn python package (Liaw 
et al. 2018) that find the best performing parameters in as few iterations as possible (Perrone et al. 2019) 
based on Bayesian inference and Gaussian processes. The hyperparameter tuning was performed using a 
5-fold cross validation on 300 data samples for training and 75 for testing. 

Performance metrics 

Since we deal with cost-sensitive classification problem, the first and the most preliminary issue is how to 
measure the errors in such a way that no superficial, often wrong, constraints or assumptions are imposed 
(Ben-David 2008). We first balanced our dataset using Synthetic Minority Over-sampling Technique 
(SMOTE) (Chawla 2002) which created new artificial wound data samples (Buda 2018). This was done 
together with 5-fold cross validation scheme. We then chose Weighted F-1 score (weighted by the number 
of true instances for each label) as our main metric of ML classifiers comparison since it is highly 
recommended for our imbalanced classes.  

𝐹 − 1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Additionally, we use Area Under the Receiver Operating Characteristics  Curve (AUC) which is a widely 
used measure of performance for supervised classification problems, mainly applicable to binary 
classifications (Hand 2001). When AUC= 0 the ML-based DSS has no screening ability, if AUC= 0.5 the 
DSS is as good as random guessing, and if AUC = 1, DSS can perfectly distinguish “Referral” and “Non-
referral” wound conditions. We also included sensitivity measure (true positive rates) to identify the 
classifiers with high power of screening referral patients to validate and recommended their use for our 
wound decision prediction.  

Explanation method 

Several explanation techniques such as LIME, MAPLE, Anchors and Shapley have been proposed in the 
literature to facilitate the interpretation of ML models (ElShawi et al. 2020). However, recent literature 
recommends the use of Shapley (based on mean Shapley values) since it provides both local and global 
interpretation as well as better detection of ML bias (ElShawi et al. 2020). When applied to wound decision 
predictions, a non-specialist provider will be able to identify incorrect predictions by comparing to global 
wound healing features recommended in the guidelines. Hence, to comply with latest literature for medical 
diagnosis prediction (Ahmad 2018) our ML-based DSS is designed to explain each predicted wound 
decision both globally and locally. To provide global explanations, we use Shapley feature importance that 
indicate which wound conditions have the highest global impacts on each decision path. Shapley feature 
importance, takes a game theory approach to determine the relative contribution of variables to the 
predictions by considering all possible combinations of variables as cooperating and competing coalitions 
to maximize payoff, defined in terms of the prediction (Ahmad 2018) based on a formula: 

∅௜ = ෎
|𝑆|! (|𝐹|  −  |𝑆|  −  1)!

|𝐹|!
ௌ∁\ி{௜}.

 [𝑓ௌ∪{௜} (𝑥ௌ∪{௜}) −  𝑓ௌ (𝑥ௌ)] . 

where |F| is the size of the full coalition (power of the complete feature set), S is any subset of the coalition 
that does not include feature i, and |S| is the size of that subset. The bit (.) at the end is how much larger is 
the payoff when we add player i to this subset S. The Shapley approach enables the identification and 
prioritization of features (i.e., wound healing features that positively or negatively affected the ML-based 
DSS decision for the nurse to see in our use case) and can be applied to any ML model (Rodríguez-Pérez 
and Bajorath 2020). Additionally, we compare and validate our Shapley feature importance (global) with 
permutation importance as a means of confirming wound domain specific wound features that were 
triggered by the model. 



Explainable Machine Learning for Wound Care 

Twenty-Seventh Americas Conference on Information Systems, Montreal, 2021 6

Results 

Table 1 presents classifiers’ performance results for wound prediction along with tuned hyper-parameters. 
According to this table, all classifiers outperformed the baseline random classifier with a large gap. The 
overall highest performance was achieved by LR with F-1 score of 0.938 and AUC of 0.896 in predicting 
wound decisions on “referral” or “non-referral” cases. LR is recommended for screening referral wound 
care decisions due to its high sensitivity. These decisions are critical for non-specialist nurses dealing with 
wound patients who cannot afford regular visits to specialist clinic unless their wound is in a critical 
condition that requires an urgent referral.  

ML Model (The hyper-parameters were tuned based on F-1 

as scoring metric) 
Sensitivity 

(Referral) 
Sensitivity 

(Non-referral)  
F-1 AUC 

 
LR (C = ‘100’, penalty solver= ‘l2’, solver= ‘liblinear’) .963 .828 .938 .896 
SVM (kernel=’rbf’, C=’361’, gamma=’0.005) .937 .828 .917 .883 
LGBM (learning_rate= ‘1’, n_estimators= ‘260’, num_leaves= ‘247’, 

boosting_type= ‘gbdt’) 
.940 .728 .901 .834 

RF (n_estimators= ‘95’, criterion= ‘gini’, max_depth= ‘18’, min_samples_leaf 

= ‘5’, min_samples_split= ‘8’) 
.908 .785 .904 .852 

Dummy classifier (Baseline) .501 .542 .509 .522 
Table 1. ML classifier performance comparison. 

We were able to demonstrate explainability of LR by using Shapley and permutation feature importance for 
global (LR reliance on wound healing features) and Shapley for local (LR reasoning for predicting a 
referral case) explanations (Figure 2). Shapley importance (mean values across both decision classes) as 
shown in figure 2-a demonstrates that LR relied mainly on wound bed followed by wound edge and PWAT 
severity score. This was expected since these wound features are known to indicate healing within standard 
clinical guidelines. Next, we used permutation importance to confirm the results of Shapley feature 
importance. As shown in figure 2-b, the same three wound healing features were identified as top features 
that LR relied on for prediction even after permutation, that is, shuffling the features in each model training 
iteration. However, both approaches confirmed that the bony prominence feature was less informative in 
assisting LR to predict referral or non-referral cases. This is in line with standard wound care guidelines 
where the boney prominence feature is used interchangeably with any wound location spotted on a bony 
part of the foot.  For example, a wound located on the ankle is, by definition, a bony prominence wound.  
We will consider this feature combination in our next iteration of the wound care prediction systems. 
Additionally, we illustrated actual Shapley values (Figure 2-c) across encoded features which indicate 
positive and negative impact on the “Referral” decision predictions along with their high or low magnitude 
in red and blue, respectively. 
 

 

 
 

Figure 2. Shapley importance for wound care confirmed by permutation importance 

a) c) 

b) 
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A ML-based wound DSS may be equipped with local explanation facility illustrating reasoning behind a 
decision recommendation for a wound instance with information about model reliance on certain wound 
domain features (e.g., wound healing features) for the nurse to consider. In our use-scenario, LR-based DSS 
can guide the visiting nurse both in choosing the right decision path and interpreting it. For instance, during 
a patient home visit a nurse may discover a wound located on the lateral ankle (Figure 3-a).  
 

a) Why is this a Referral patient? 

 
b) Why is this a Referral patient? 

 
c) Why is this a Non-referral patient? 

 
Figure 3. Shapley explanations for a wound instance  

 
After initial assessment, the nurse determines that the wound looks healthy due to presence of epithelium 
on the wound edge. When the LR-based DSS conflicts the non-specialist nurse’s assessment by predicting 
referral with approximately 61% chance (due to high reliability of the LR predictions on wound healing 
features), the explanation facility of the DSS becomes critical. For instance, in our use-case, explanations 
demonstrate that although the wound edge is healthy, the wound is severe enough (PWAT = 14) to be 
considered for a referral (i.e., to be debrided or cleaned) due to presence of thin slough which impedes 
wound healing. Given 61% chance, the nurse may decide to contact the wound specialist before referring 
the patient. However, if the chance of referral presented in the explanation facility was higher (Figure 3-b), 
the nurse may refer the patient to a specialist. Similarly, for a wound located on the lateral leg (Figure 3-c), 
LR-based DSS recommends a firm “Non-referral” (i.e., there is roughly 6% chance of referral) due to low 
severity of the wound (PWAT=10) and healthy wound bed (i.e., no presence of unhealthy tissues). Hence, 
the nurse can collect these wound measurements and advise the patient on continuing with the current 
treatment. 

Conclusion and limitation 

ML-based DSS for medical decision-making usually fail to provide simple interpretations for their predicted 
outcomes. As a result, most of these medical DSS are considered less reliable and usable for non-specialist 
providers who seek simplicity in DSS outcomes due to lack of expertise in one specific medical domain. To 
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address this problem, we designed an explainable ML solution usable for complex medical decision-making 
problems. We used both global and local explanation solutions to demonstrate how our ML-based DSS can 
be both high-performing and interpretable. We applied these solutions for chronic wound management 
decisions as a use case. Findings suggest visiting non-specialist nurses can simply interpret and hence 
generalize the predictions for any given wound decision scenario. We provided clear instances illustrating 
how these predictions and their explanations can be interpreted if designed and integrated into an 
envisioned smartphone DSS App supporting non-specialists in their chronic wound decision making. A 
similar approach can be used for the development of ML-based DSS tools assisting novice decision makers 
across those disciplines that use a high-level decision process and multi-factor complex decision-making 
criteria.  

This research has some limitations. We were limited to a training dataset of 375 wound images which may 
be considered small and a threat to generalizability of the ML-based DSS envisioned for a real-world setting. 
To avoid this issue, we oversampled the data and ran a thorough evaluation that demonstrated our 
classifiers performance using cross-validation. However, future research can further verify our classifiers 
using larger datasets. Collecting, labeling, and validating wound care datasets is challenging due to the 
limited availability of wound image datasets with wound care decisions. Additionally, manual feature 
extraction from wound images is not considered highly efficient for clinical use of our DSS. Thus, we are 
experimenting with automatic feature extractors using deep learning to be integrated as part of feature 
selection for our ML-based DSS. Our future work includes integration of these ML techniques into a 
smartphone App using image processing techniques that allow for automatic feature extraction of our 
predictors for these decision-making policies. We also plan on designing and integrating an explanation 
interface to be integrated in the DSS App.  
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