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A B S T R A C T

Detecting (or screening for) Covid-19 even before symptoms fully manifest, could enable patients
to receive timely and life-saving treatment. Prior work has demonstrated that heart rate and step
data from low-end wearables analyzed using deep learning models can detect Covid-19 reliably.
However, significant individual differences in vital sign manifestation (high inter-subject variabil-
ity) present a challenge to the generalization of deep learning models across diverse users. The
limited amount of data in many medical scenarios further exacerbates this issue. Consequently,
neural network models that can learn from limited vital sign data and varied inter-subject pat-
terns are compelling. Meta-learning has emerged as a powerful technique for tackling various
machine learning challenges, including insufficient data, domain shifts across datasets, and issues
with generalization. This study proposes MetaCovid, a deep adaptation framework that employs
meta-learning to address the variability of vital sign manifestation between subjects using only
two days of data in order to detect Covid-19 before symptoms manifest. MetaCovid leverages
heart rate and step measurements collected from consumer-grade health trackers over the preced-
ing 2 days, extracts 45 digital bio-markers (features), which along with raw data, are fed into a
deep GRU-based network with an attention mechanism, followed by uncertainty filtering. Meta-
Covid is trained using OC-MAML, a one-class few-shot MAML variant that adapts to the target
distribution/user using only samples from the majority class. MetaCovid generalized well across
two relatively small, publicly available Covid-19 datasets, achieving a recall of 0.81 and 0.92,
and detecting 61% (14 out of 23) and 50% (17 out of 34) of users infected with Covid-19 before
symptom onset. When OC-MAML was excluded from MetaCovid in an ablation study, the F2

score dropped by 36%, highlighting that meta-learning indeed facilitates adaptation of deep sens-
ing models to varying vital sign patterns. Notably, MetaCovid outperforms the current state-of-art
method by predicting Covid-19 early on day N using heart rate and step measurements from only
the preceding 2 days compared to 28 days, reducing data requirements by 93%. To the best of our
knowledge, our study is the first to propose utilizing meta-learning to mitigate vital sign variabil-
ity with limited data for Covid-19 screening. We believe that MetaCovid will pave the way for
innovative Covid-19 interventions that are accurate even with limited data and help contain the
spread of infectious diseases in the future.

isease caused by the coronavirus virus, was first discovered in Wuhan, China, and was declared a global pandemic on March
9 vaccinations were introduced in early 2021 but have faced some adoption challenges. Some subjects are unwilling to receive

uthor: Email address: asarwar@wpi.edu (Atifa Sarwar);
sevier B.V. All rights reserved.
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t rate of two subjects over three healthy days. A7EM0B6 has a mean RHR of 66 [Max: 71, Min: 61], while A0VFT1N exhibits higher RHR with a mean of 76
illustrating both intra and inter-subject vital signs variability.

ns about its safety Karlsson et al. (2021) and religious beliefs Olagoke et al. (2021). Due to its high transmission rate and the
taining the virus’ spread early, Covid-19 has significantly impacted societies, economies, and healthcare systems worldwide. This
the importance of screening infectious diseases to enable timely public health interventions, clinical management, and disease

sing has solved several important real world problems including Human Activity Recognition (HAR) Mim et al. (2023), disease
et al. (2023), and transportation and urban planning Liono et al. (2018). In 2022, about 216.43 million people worldwide were

r smart wearables Ruby (2023). These wearables can passively monitor physiological signs such as heart rate, respiration rate,
tivity, and can be utilized to passively assess a broad range of diseases. Physiologically, a 1°C increase in body temperature
art rate by 8.5 beats per minute (bpm) Karjalainen & Viitasalo (1986). Using smart wearables to monitor heart rate continuously
deviations, facilitating early detection of illness. Numerous studies have explored using abnormalities in physiological signs for
ection including paroxysmal atrial fibrillation Narin et al. (2018), cardiovascular disease Zhang et al. (2020), and Covid-19 Mishra
et al. (2022).

le sensing offers significant potential for early disease detection, it faces certain challenges. People exhibit substantial individual
e manifestation of vital signs. For instance, adults’ heart rate can range from 60 to 100 beats per minute Pulse & HR (2022). Various
e to the variability of physiological signs, including age, gender, stress levels, work routines, and medication usage Physiopedia.
the resting heart rate (RHR) of two healthy subjects over three days, highlighting significant variability within and across subjects
wide range of variations can introduce a covariate shift in data distributions, which present a challenge to effectively transferring
s subjects and confound machine learning models. Ultimately, performance degradation results when models trained on such data

real-world settings.
vital sign variability, prior work on predicting Covid-19 from physiological signs have employed techniques such as personalized
et al. (2020) Cho et al. (2022), training on only a subset of data Sarwar et al. (2023), and estimating individual patients’ baseline
istorical data Chung et al. (2023)Liu et al. (2022). While these approaches achieved some encouraging results, additional issues

g: i) Personalized training requires substantial data collection per subject, which is an expensive and time-consuming process,
el only on a subset of data may omit vital information and hinder generalization, and iii) Estimating baseline using extended
s a longer subject participation period before a prediction can be made, which can result in delaying or even completely missing
. Since increasing the efficiency of diagnoses can decrease new infections by up to 88.8% Rong et al. (2020), conversely, delayed
danger a patient’s life and increase the likelihood of transmission of the virus to others, which in turn leads to more infections and
ks. In contrast to previous research, our goal is to develop a single model that can learn from varying vital signs with only few data
ly and accurate Covid-19 detection. Thus, the overarching goal of this study is to answer the following research question: "Is there
neural networks framework for pre-symptomatic screening of Covid-19 from physiological signs collected using consumer-grade
which can overcome high inter-subject vital signs variability in limited data scenarios?
ng, or learning to learn, is a branch of machine learning that tries to adapt a model previously trained on a given task, to new
al additional training. To achieve this, the model is trained on a set of known tasks during the training phase in such a way that

el can quickly adapt to new tasks. Although meta-learning has been applied to various domains, it is currently under-utilized in
y Banluesombatkul et al. Banluesombatkul et al. (2020) and Liu et al.Liu et al. (2021) have utilized MAML for handling data
eep stage classification and video-based vital sign measurement respectively. However, both methods require the network to be
large dataset, which: i) does not address our overarching goal of overcoming variability in scenarios with limited training data, and
that pre-training enables their proposed models to learn and adapt to varying distributions in advance. To the best of our knowledge,
first to propose employing meta-learning for Covid-19 screening, where each subject is treated as a new task to overcome high
iability in the physiological sign without requiring any data beforehand. We employed the idea of few-shot learning, facilitated by
hich adapts to new subjects/distributions with only a few samples per subject.

proposes MetaCovid, a deep meta-learning-based adaptation framework for pre-symptomatic detection of Covid-19 from physio-
art rate and step) collected passively using consumer-grade wearables. Using a 2-day sliding window (1-day offset), we extracted
f 45 known as well as novel digital biomarkers, characterizing circadian rhythms and physical activity. Circadian rhythms are
that are part of the human body’s internal clock, running in the background to carry out essential physiological functions and
as performance, sleep, rest-activity cycles, and mood Vitaterna et al. (2001). The extracted features and raw data were input into

ed neural network to identify the subject as either healthy or infected. Since Covid-19 has a mean incubation period of 6.38 days

2
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, the goal of MetaCovid is to detect Covid-19 infection accurately from D−6 to D+6 where D0 refers to symptom onset day. To
entioned challenge regarding variability in patient data, we trained MetaCovid using One Class MAML (OC-MAML) Frikha
-shot one class classification variant of MAML Finn et al. (2017). OC-MAML modifies the data sampling technique of MAML

ing such that the model adapts to a new task using K samples from the majority class, while the performance of the adapted
using a class-balanced set. Our results demonstrate that MetaCovid outperforms all the baselines for the task of early Covid-19

ributions are as follows:

se MetaCovid, an innovative deep meta-learning-based adaptation framework for pre-symptomatic detection of Covid-19 from
and step data collected passively using consumer-grade health trackers. To the best of our knowledge, our work is the first to
ter-subject variability inherent in patients’ physiological signs using meta-learning to accurately detect pre-symptomatic Covid-
tween 6 days before to 6 day after symptom onset.

us evaluation of MetaCovid demonstrates that it outperformed all baselines achieving a recall and F2 score of 0.81, precision
PV of 0.76, and AUC-ROC of 0.78 with only two shots (2 samples or days of data) per subject. It generalized well on two

vailable Covid-19 datasets, identifying 61% (14 out of 23) and 50% (17 out of 34) subjects before symptom onset. Additionally,
d outperformed state-of-art methods by predicting Covid-19 early on day N using heart rate and step data from the preceding 2
ared to 28 days, reducing data requirement by 93%. It will enable the detection of Covid-19 induced vital sign abnormalities

cilitating timely medical intervention, and potentially reducing infections by up to 88.8% Rong et al. (2020).

ach highlighted that meta-learning indeed facilitates overcoming inter-subject vital signs variability because without meta-
etaCovid had a 36% drop in F2 score.

d works with only two shots and is not affected by imbalanced class distributions, significantly reducing the laborious task of
class-balanced data for each user while still achieving promising performance.

e paper is as follows: Section 2 outlines related work. Section 3 describes our methodology including an overview of our dataset,
hniques, feature extraction, and our proposed framework, MetaCovid. Section 4 discusses our experimental setup and validation
5 evaluates our approach with section 6 highlighting important findings and limitations of the study. Finally, section 7 concludes

eviews prior work on pre-symptomatic detection of Covid-19 based on physiological signs collected using consumer-grade health
ary, prior work is limited to personalized training, computing an individual’s baseline using prolonged historical data, or training
ilable data. In contrast, our work employed the concept of meta-learning-based personalized models to mitigate high inter-subject

anifestation of Covid-19 physiological signs, while significantly reducing the amount of data required.

Training:

ogu & Snyder (2021) proposed a Long Short Term Memory (LSTM) cell-based Autoencoder for Anomaly Detection (LAAD)
19 infection, which analyzed the user’s Resting Heart Rate (RHR) relative to its baseline values. The study detected 56% of

their pre-symptomatic phases and 36% after the onset of symptoms. Cho et al. Cho et al. (2022) employed OC-SVM on
of 29 Fitbit users for pre-symptomatic detection of Covid-19. The Resting Heart rate (RHR) and Heart Rate over Steps (HROS)

om the heart rate and steps data and passed to OC-SVM to detect anomalous samples. The authors reported that their method
aspects: earlier and more detection and fewer false positives. Abir at el. Abir et al. (2022) proposes PCovNet, a Long Short-
iational Autoencoder (LSTM-VAE)-based anomaly detection framework, to detect Covid-19 infection in the pre-symptomatic
sting Heart Rate (RHR) derived from a wearable device. The proposed method identified 44% subjects before symptom onset.
en the impact of inter-subject variability in the data, these approaches utilized personalized training to train the model. However,
ing requires a massive amount of data per subject and a model trained for a given subject cannot be reused for another subject,
ical to deploy in real-life settings.

ring Prolonged Historical data for Prediction:

Chung et al. (2023) proposed a transformer model, which learns HR variability patterns for pre-symptomatic prediction of
posed method first calculates Resting Heart Rate (RHR) by removing HR values with step values greater than 0. Thereafter, the
y N are normalized using the mean and standard deviation from the preceding 28 days and fed into a transformer for predicting
lthy or infected. The proposed approach obtained a sensitivity of 0.84 and an AUC-ROC of 88%. Abir et al. proposed PCovNet+
a combination of a CNN-based Variational AutoEncoder and an LSTM network to detect anomalous RHR considering 16 days

. The proposed model was initially pretrained on data from a healthy population, and subsequently fine-tuned using RHR data
ve individuals to achieve a personalized version for each subject. PCovNet+ successfully detected 47% of the subjects in the
period. However, it is important to note that both of these approaches require extended historical data (28 and 16 days), which is

n period before a prediction can be made.
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of MetaCovid, our Proposed Approach for Pre-symptomatic Detection of Covid-19 using Consumer-grade wearables and Meta-learning. The source dataset
rate and steps of Covid-positive subjects. Each subject’s data is divided into a support set (K-shots of healthy samples) and a query set (Q samples of Class-

, the support set is fed into the base model (step 1) to learn the subject-specific weights (step 2), followed by loss computation using the query set (step 3), and
odel (step 4). Once trained, the base model can be adapted to unseen subjects using only K-shots of the healthy samples.

ing on a Subset of Data:

. Mayer et al. (2022) decomposed HR collected using the Fitbit health tracker into six parameters: basal heart rate, autocorrelated
ep residual, circadian phase uncertainty, amplitude, and uncorrelated noise. The features extracted were utilized to train a Support
(SVM) classifier, achieving an AUC-ROC of 0.76. The study labeled samples from days D−5 to D−1 as infected, and data from
6 as early pre-symptomatic where D0 refers to the symptom onset day. Apart from data gathered on the above days, data from
discarded. Sarwar et al. Sarwar et al. (2023) proposed a Gated Recurrent Unit (GRU) Network with Multi-Head Self Attention
ict Covid-19 one day before symptom onset using biobehavioral rhythmic dysregulation. To create a labeled dataset, the study
d a 24-hour interval during which the subject was healthy as a healthy sample, labeled data collected one day before symptom
infected sample and discarded all the remaining data. The proposed method achieved a sensitivity of 0.69 and a specificity of 0.89.
uraging performance, using only a subset of data for model training has two shortcomings. First, it may lead to not including some
ation during model training. Second, it raises questions about the generalizability of these approaches as the model’s performance
ent on the specific instances utilized during training.

Methods

presents an overview of the dataset, pre-processing techniques, and feature extraction employed by our study. We then detail,
proposed deep meta-learning-based model for pre-symptomatic detection of Covid-19 using consumer-grade health trackers and
ig 2 presents a general overview of our proposed approach.

ataset

was trained using a dataset previously gathered by Mishra et al., a study that previously explored pre-symptomatic detection of
hysiological data (heart rate and step) gathered from a smartwatch Mishra et al. (2020). The study enrolled 5,262 participants,
used a Fitbit, 984 used an Apple device, 428 reported using a Garmin device Garmin (2023), and the remaining used other
g the Oura Ring Oura (2023), chest BioStrap Biostrap (2023), and the Empatica wristband Empatica (2023). During enrollment,

e asked to provide: i) demographic information, such as age, sex, and weight, ii) Medical history, and iii) Any previous Covid-19
., confirmed or suspected, and if tested, the test date, results, and symptom onset date. Furthermore, in order to track symptoms
their severity, and to discover any new Covid-19 tests or diagnoses, test results, and recovery dates, all participants were asked to
survey. Since most enrolled participants used a Fitbit device, the study gathered data from only Fitbit users and had 73 healthy, 15

lnesses, and 32 Covid-positive individuals. As our work focuses on pre-symptomatic detection of Covid-19, we utilized only the
-positive participants that also had heart rate and steps data available between 20 days prior to symptom onset and up to 21 days
e 1 summarizes the demographics and health characteristics of the Covid-positive cohort. To create a labeled dataset, we labeled
as infected, records prior to D−6 as healthy, and discarded all data after D+6 where D0 refers to symptom onset day. In contrast

at discarded data occurring before the disease manifests, we specifically excluded data only after D+6 as it belongs to either the
overy period Cevik et al. (2021) He et al. (2020) Since the primary focus of this study is early Covid-19 detection, we believe
rolonged infectious or the recovery period makes sense because in these periods, although physiological signs return to baseline
he possibility of viral shedding and prolonged manifestation of abnormal values of physiological signs. Excluding data from these
that MetaCovid concentrates on and learns meaningful patterns from periods relevant to early detection and generalizes well, while

rom irrelevant data.
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Table 1. Demographic and Health Characteristics of 32 Covid-Positive Participants from Dataset by Mishra et al.Mishra et al. (2020)

Demographics
Age 47 (27-67) Gender Female: 25 (78.1%)

Ethnicity
an 27 (84.4%) Mixed/Other 5 (15.6%)

Input Devices
onic Fitbit Charge 3, Charge 4

Self-Reported Health
atory Lung
e

6 (18.8%) High Blood Pres-
sure

4(12.5%) High Cholesterol 4 (12.5%)

isease 1 (3.1%) Psychiatric Ill-
ness

4 (12.5%) Gastrointestinal or Diges-
tive System Disease

5 (15.6%)

y/Immune
e

7 (21.9%) Unknown 1 (3.1%)

Baseline Body Mass Index
12 (37.5%) 25 to <30 7 (21.9%) 30 or Higher 6 (18.8%)

wn 7 (21.9%)
Sensor Readings

ate After every 15 Seconds Steps After every 1 Minute

ng

ilable in the Mishra et al. dataset were pre-processed using four main steps:

emoval: Outliers were removed from the heart rate signal by dropping all records in which the HR was < 30 or > 200 Beats Per
PM).
ization: Despite gathering the data from Fitbit devices only, some wearable data had different timestamps and frequencies. To
ze HR and step input streams, we resampled HR to a one-minute resolution, which was then aggregated with the step data stream
HR timestamp.
utation: To reduce the impact of missing values on the final prediction, the aggregated data was resampled to a 1-hour resolution
uring which the heart rate and step values were absent for more than 12 hours (50% of the day) were dropped. The remaining

alues were filled with the last observed value (Last Observed Carried Forward or LOCF algorithm), which was found to be the
tive imputation method for accurate detection of Covid-19 (Discussed further in Section 5).
tion: The raw sensor data was segmented into overlapping 2-day windows with a 1-day offset between the consecutive windows.
t of various window lengths on performance will be studied in section 5. With regards to labeling, the window was labeled as
the 2-day interval overlapped with the period between D−6 and D−1 where D0 refers to the symptom onset day.

action

the work of Rykov et al. Rykov et al. (2021), a range of digital bio-markers (features) characterizing physical activity, circadian
ological parameters were extracted. This set of digital biomarkers has previously proven effective in depression screening, with
e first to explore them for Covid-19 detection. Table 2 is a detailed description of the extracted features and their mathematical
features were extracted over a window length of 2 days. To extract the parametric rhythmic features, we employed the Cosi-
(1967), a method of obtaining an estimate of the Midline Statistic of Rhythm (MESOR), the amplitude, a measure of phase

e chosen period using cosinor curve fitting. The Cosinor is based on a trigonometric regression model. When the period is
is defined as:

y(t) =
N∑

i=1

(Ai,1 ∗ sin(
t

P/i
.2π) + Ai,2 ∗ cos(

t
P/i
.2π)) + M + e(t)

sponds to the time points to be observed within the time series, N is the number of components, M is MESOR, P is the observed
error term, and Ai,1 and Ai,2 are the parameters of the model. We employed CosinorPY Moškon (2020), a publicly available

tation of cosinor-based methods for rhythmicity detection.

Proposed Framework

presents technical details of MetaCovid, our proposed framework, which consists of three parts: 1) a deep GRU-based attention
le-level Covid-19 infection prediction, 2) uncertainty estimation in order to improve performance by removing predictions that
tain about, and 3) a meta-learning algorithm for overcoming vital signs variability with minimal data. Figure 3 is a high overview

amework.
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Table 2. List of Digital Biomarkers (Features) with Definition

Feature Description
Daily Steps Average of daily sum of steps over the observation period.
Sedentary Time Average daily time when no activity is performed.
Light Intensity PA (LPA) -
mean

Average daily time of physical activity with steps < 6000 steps per hour O’Brien et al. (2018).

Moderate Intensity PA (MPA)
- mean

Average daily time of physical activity with steps > 6000 but < 7920 per hour O’Brien et al.
(2018).

Vigorous Intensity PA (VPA) -
mean

Average daily time of physical activity with steps > 7920 per hour O’Brien et al. (2018).

HR - mean, SD, CV Average, SD, and CV of HR, reflecting the extent of stability/variability in HR.
Daytime HR - mean, SD, CV HR at day-time (14:00 - 16:00)
Nighttime HR - mean, SD, CV HR at night-time intervals (00:00 - 2:00, 2:00 - 4:00, 4:00 - 6:00)
RMSSD Root mean square of successive differences of HR characterizes the sharpness of successive

HR deviations and can be interpreted as a proxy measure of ECG-based HR variability.
Acrophase The time of day time when the rhythm reaches its maximal value for the first time in the cycle.
Mesor The Midline Estimating Statistic of Rhythm refers to the mean daily activity.
Amplitude The difference between the maximum value of the fitted cosine curve and MESOR. The lower

amplitude indicates a more dampened rhythm.
Inter-daily Stability (IS) Measures stability/regularity of circadian rhythm over a series of 24h cycles, and is defined

as:

IS =
N
∑p

h=1(xh − x)2

p
∑N

i=1(xi − x)2

where N is the total number of data items (48 in our case), p is the number of data items per
day (24 in our case), xh corresponds to each hour of the mean profile, while xi represents each
given hour of raw data, and x is the average of all data.

Intra-daily Variability (IV) Quantifies the fragmentation of periods of activity from periods of rest within a 24-h cycle and
is given as:

IV =
N
∑N

i=2(xi − xi−1)2

(N − 1)
∑N

i=1(xi − x)2

where N is the total number of data items (48 in our case), xi represents each given hour of
raw data, and x is the average of all data.

M10 Diurnal activity, the mean activity of the ten consecutive most active hours of the average daily
activity profile.

L5 Nocturnal activity, the mean activity of the five consecutive least active hours of the average
daily activity profile.

Relative Amplitude Represents daytime activity and is given as the difference between M10 and L5 divided by the
sum of M10 and L5, i.e., M10−L5

M10+L5
Inter-daily Coefficient of vari-
ation (ICV)

The 24h mean of by-hour coefficients of variation (CV), where CV is the ratio of SD to average
in each hour between days.

ICV =
1
p

p∑

h=1

√∑N
i=1(xi−xh)2

N

xh

where p is the total number of data items per day (24 in our case), xi represents values corre-
sponding to each hour from all days, xh represents values from each hour from the mean 24h
profile.

Rhythm autocorrelation (AC) The autocorrelation of time series with a day-length lag, another alternative measure of a
rhythm stability; higher values indicate higher stability/similarity of data patterns across days.

AC =
∑N−k

i=1 (xi − x)(xi+k − x)
∑N

i=1(xi − x)2

where k is a day-length lag (24 in our case), xi represents value of each interval, x is the
average of all data, and N is total number of data points.

Daily peaks - mean, and SD The number of peaks per day in time series. Robust peak detection algorithm was used to
identify peaks (following algorithm parameters were set for steps data: lag = 10, threshold =
10, influence = 0; for HR data: lag = 10, threshold = 2, influence =0.25)
re computed seperately for both heart rate, and steps values over the observation period.
6
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MetaCovid. Raw Sensor Data (Heart rate and Step) collected over 2 days (48X2) is fed into a GRU Layer, followed by Self-Attention (Step 1), and element-wise
and 3). The output then passes through a Global Average Pooling layer (Step 4), and is concatenated with Rhythmic Features (Step 5 and 6). Subsequently, it
nected layers with the sigmoid activation applied at the end for final prediction (Step 7). Finally, labels predicted with low confidence are removed by applying

ainty Quantification.

-based Attention Network
rior work of Sarwar et al. (2023), our proposed deep learning model comprises of five layers: a single Gated recurrent layer, an
d three fully connected layers. Each fully connected layer is followed by a dropout layer, with a sigmoid function at the last layer.
ces were made as: i) GRU Cho et al. (2014) is able to learn rarely occurring events such as abnormal physiological signs better
al neural networks architectures (LSTM, RNN) and can outperform them in terms of the speed of convergence and generalization
4), ii) In disease diagnosis, medical practitioners generally examine only critical measurements corresponding to vital signs, as

contribute equally to estimating one’s health status. We employ attention, first introduced by Bahdanau et al.Bahdanau et al.
mechanism for determining the importance of a word in a given sentence or more generally tries to discover and weight the most
input data more. Formally, attention is expressed as:

Q = XWQ, V = XWV , K = XWK

score = so f tmax(
QKT
√

dk
)

Attention(Q,K,V) = score ∗ V

rs to an input sequence, and Query(Q), Value(V), and Key(K) to the linear projection of X. MetaCovid employs self-attention,
rious positions in data in order to compute the representation of the same sequence. This is achieved by setting query, key, and
sequence itself. With regards to data flow through the network, the model analyzes a tensor of shape 48X2, i.e., raw heart rate
er the preceding 2 days. The input is passed from a single Gated Recurrent Unit (GRU) to a self-attention layer, followed by

tiplication to learn the weighted representation of the input. The resultant output is fed into the Global Average Pooling layer and
rhythmic features (1X45). Subsequently, it is traversed through two fully connected layers, each followed by a dropout with a

ly, the sigmoid is used to produce the final output: whether the subject is infected with Covid-19 or not.

ased Uncertainty Filtering
s a significant barrier to the deployment of deep learning models in healthcare settings. Model certainty, or the likelihood that a
utput is accurate, could be used to improve trust of deep learning models by medical professionals, making uncertainty estimation
s targeted at healthcare. The growth of commercial wearables in healthcare further exacerbates this challenge, because along
certainty (the model’s output), the models also have to cope with aleatoric uncertainty (the data formation process). To address
to utilize Entropy-based uncertainty filtering to remove all predictions for which the model is uncertain. In the domain of digital
olezal et al. Dolezal et al. (2022) previously employed the standard deviation of the distribution of predictions, generated from an
odels in a drop-out-enabled network, as the uncertainty metric. Our study extended this approach by introducing a novel aspect.
g the standard deviation, we used the probabilities obtained from the proposed deep network directly to compute the uncertainty

By examining our selected evaluation metrics, our empirical findings demonstrate that the proposed uncertainty estimation
tly improves performance (Discussed further in Section 5). Entropy, a measure of randomness or impurity in a variable, is

ϕ(x) = −
K∑

p(y ) ∗ log(p(y ))

j=1

j j

7
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ta-training of OC-MAML

et of meta-training tasks
earning Rates
Batch size for adaptation and validation
ss Imbalance Rate (CIR)

nitialize θ
ne do

batch of Tasks Ti from Str: Ti = {Ttr
i ,Tval

i }
sampled Ti do

ple K examples B from Ttr
i with CIR = 0

lize θ
′
i = θ

umber of adaptation steps do
′
i = θ

′
i − α∇θ′i Ltr

Ti
( f
θ
′
i
)

ple Q examples B
′

from Tval
i with CIR=50%

pute Loss Lval
Ti

( f
θ
′
i
) using B

′

← θ − β∇θ∑Ti
Lval

Ti
( f
θ
′
i
)

-learned parameters θ

the number of classes (binary in our case), and p(y j) is the probability that y belongs to class j. The optimal uncertainty threshold
ich the predictions are likely to be correct, is then determined. To determine the optimal threshold, Youden’s index (J) Ruopp et al.
ted for all possible uncertainty values (ϕval) over the validation dataset, defined as:

J(ϕval(x)) = S ensitivity(ϕval(x)) + S peci f icity(ϕval(x)) − 1

l uncertainty threshold is then defined as the set of values that maximize the Youden Index, i.e.,

ϕopt = argmax
ϕval

J(ϕval)

optimal threshold ϕopt is used by the model to filter out predictions about which it is not confident. Our instance-level confidence
ed as:

C(x) =


High Con f idence ϕ(x) < ϕopt

Low Con f idence ϕ(x) ≥ ϕopt

L: One Class Few-Shot Classification via Meta-learning
al methods for training deep neural networks require extensive training data and are prone to overfitting when training data are
mples or few-shot scenarios). Few-shot classification aims to learn a classifier that can use only a few labeled examples to

lasses that unseen data belong to. The meta-learning paradigm is a promising few-shot classification approach, where the emphasis
and transferring knowledge learned from various tasks to prevent overfitting and improve generalization. Meta-learning models
n, enabling them to generalize effectively to unseen tasks with minimal data and has emerged as a promising solution for facilitating
healthcare where challenges such as data scarcity and domain shifts are prevalent. Meta-learning algorithms fall into three main

tion-based algorithms: that aim to solve an optimization problem, which can converge quickly during training.

ased algorithms: that generate kernel weights by measuring the distances between samples in a latent space.

ased approaches: where the emphasis is on learning model parameters/architecture so that it can quickly adapt to new tasks.

metric- and model-based meta-learning approaches are promising, they depend on the choice of distance metrics and underly-
ptions. If things go wrong, these selections can significantly impact performance, leading to sub-optimal results. MAML, an
ed model-agnostic approach, aims to learn model initialization parameters that facilitate fast adaptation to new tasks/domains with
ata. To achieve this, all available tasks are divided into three disjoint sets: Str for meta-training, Sval for meta-validation, and Stest

. Each task Ti is divided further into two disjoint sets: Ttr
i is used for adaptation, while Tval

i is for validation. Enabled by few-shot
del fθ is adapted to task Ti by taking a few gradient descent steps using a few data points from Ttr

i yielding task-specific weights

i ( fθ), where α is a step size and can be fixed or meta-learned. The task-specific model fθi is validated on Tval
i to compute the

the meta-update. Note that the loss is computed using the updated model parameters θ
′
, whereas the adaptation for each task is
the model parameters θ. Finally the model parameters are updated as:

8
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θ ← θ − β
∑

Ti∼p(T )

Lval
Ti

( f
θ
′
i
)

e meta-update size. Although MAML is a popular algorithm for learning several tasks with minimal effort, it only learns model
meters that are suitable for class-balanced, few-shot classification.
assification (OCC): refers to a specific type of binary classification problem where adequate data is available for only one class.
are often considered OCC due to the fact that the occurrence of a specific disease (ill people) is typically less frequent in contrast

althy people). Covid-19 detection aligns with the concept of OCC as being Covid-19 positive is a relatively rare event, posing
application of MAML for Covid-19 detection. Thus to overcome the inter-subject variability of vital signs for pre-symptomatic
ovid-19 in limited data-settings, we propose training our deep network using OC-MAML, a variant of the MAML algorithm.
a et al. (2021) adapted MAML to one-Class Few-shot classification with focus on learning model initialization parameters that
ly with either no or only a few samples of minority class, and yields the same performance as doing so with a class-balanced
L achieves this by introducing a hyperparameter (c), which sets the percentage of the samples belonging to the minority class

ampled for model adaptation, e.g. setting c=0% means only majority class samples are sampled for Ttr
i . In contrast, for Tval

i ,
balanced with c = 50%. Algorithm 1 shows the pseudocode for OC-MAML meta-training, while for meta-testing only steps 5-8
apting the model to new subject.

Setup

otocol
evaluate MetaCovid performance, we utilized 5-fold cross-validation with no overlap between training and testing segments at

luation, metrics that have been widely used in prior studies for the early detection of Covid-19, were utilized.

Of all subjects that are predicted as infected, how many were really infected, expressed as T P
T P+FP

all subjects that are infected, how many were accurately predicted as infected, expressed as T P
T P+FN

redictive Value (NPV): the probability that following a negative test result, whether the individual did not truly have the specific
pressed as T N

T N+FN

is a probability curve that plots TPR and FPR at various thresholds and evaluates how well the model distinguishes between

s the weighted harmonic mean of precision and recall, i.e. ((1+β2)×Precision×Recall)
β2×Precision+Recall

. Since identifying infected subjects is more
for containing Covid-19’s spread, the F2 score, which sets the β = 2, for evaluating MetaCovid, was utilized.

ion Details
n: To transform all data onto the same scale, subject-wise Z-score normalization ( x−µ

σ ) was used. Each participant’s raw data and
gical features were mapped on a scale of his/her standard deviation (σ) centered at his/her mean (µ) over the study period. Our

ted that this normalization technique was more suitable for pre-symptomatic Covid-19 detection with its associated contraints.
ter Tuning: To achieve optimal results, grid search was used to experiment with and tune hyperparameters for the MetaCovid

e and OC-MAML. Table 3 shows the optimal values of these hyperparameters along with their original values. For OC-MAML,
jects were utilized for adaptation and validation, and each subject in the dataset was treated as one meta-task (Ti). To sample K
n, we set c=0%, i.e, only healthy samples were used for adaptation, while for validation, Q/2 samples were selected from each
a-training, we utilized Binary Cross Entropy Loss (BCE = − 1

N
∑N

i=1 yilog(pi) + (1 − yi)(1 − log(pi))) for loss computation. The
nce is assessed across five different adaptation tasks sampled from each test subject, with the reported results being an average

episodes.
etaCovid was compared to six baselines selected from three categories.

Classification (OCC): Previous studies have widely explored these OCC techniques for pre-symptomatic detection of Covid-19
(2022) Bogu & Snyder (2021). From this category, OC-SVM, Isolation Forest (IF), and LSTM AutoEncoder-based anomaly

were selected.
edding Networks: Within this category, we explored deep embedding networks, which are trained on the meta-training tasks as
ne is trained using the traditional settings for all training tasks together, followed by evaluation on test tasks. While the other
d using the "Finetune" baseline Triantafillou et al. (2019) that utilized the support set of the given test episode to train an output
p of the embedding. The rationale behind using deep embedding networks as baselines was to assess their ability to address the
of vital signs within subjects in limited data-settings.

Metric-based Meta-Learning: Lastly, one-way prototypical networks Kruspe (2019) were selected to evaluate whether OC-
as the most suitable choice for MetaCovid. One-way prototypical networks introduce a "null" class centered at zero to identify
with only few examples per class.

he data imbalance issue in deep embedding networks, a class-weighting strategy was applied during training: a value of 1 for

infected. For LSTM-AE, the mean absoulte reconstruction error (
∑N

1 |x̂−x|
N ) over validation data was utilized as a threshold to
s examples.

9
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Table 3. Hyperparameter Tuning

eter Explored Values Optimum Value Hyperparameter Explored Values Optimum Value

Model Architecture

pth 1, 2, 4 1 GRU Layer Size 256, 512 256

cted 1, 2, 3, 4 1 (Rhythms Network)
2 (Joint Network)

Neurons in Hid-
den Layer

128, 256, 512 256 (Rhythms Network)
128 (Joint Network)

0.25, 0.5 0.25

OC-MAML

ning 0.01, 0.001,
0.0001

0.001 Outer Learning
Rate (β)

0.01, 0.001,
0.0001

0.01

ion 2, 10 2 Validation size
(Q)

2, 10 2

s 1, 3, 5, 10 3 (Meta-training)
1 (Meta-Testing)

Optimizer Adam, SGD,
RMS Prop

SGD with a decay of
0.0005

1000 Early Stopping used to
avoid overfitting

Batch Size 8, 16, 32 8

(a) (b)

id vs. Baselines. The error bar shows Standard Deviation across Folds. (TN refers to Traditional Networks, IF to Isolation Forest, OC to One-Class, and AE to
erformance of MetaCovid On Mishra’s and Alavi’s Dataset as a function of K

nd Results

of MetaCovid over Baselines

demonstrated exceptional performance, outperforming all baselines with a Recall of 0.81, Precision of 0.82, AUC-ROC of 0.78,
.81. Although MetaCovid achieved promising Recall, Precision, AUC-ROC, and F2 score results, it did not perform as well based

onal Networks obtained the highest NPV of 0.85, followed by the "Finetune" Baseline (0.82) and LSTM-AutoEncoder (0.81),
etaCovid equipped with its novel feature extraction, OC-MAML, and uncertainty estimation primarily focuses on identifying

hile achieving a desirable performance (NPV=0.76) for predicting healthy subjects. MetaCovid identifies 14 (61%) subjects early
n period, i.e. D−6 to D−1, 7 (30%) subjects during D0 to D+2, and had delayed prediction of 2 (9%) cases, i.e., during D+3 to
refers to symptom onset day. The performance of MetaCovid was also evaluated using different values of K and Q and found

K=2, using 10 shots for adaptation drops the Precision by 2%, AUC-ROC by 4%, and NPV by 24%, while Recall and F2 score
nt. These findings led to the conclusion that Meta-learning indeed facilitates overcoming the inter-subject vital signs variability,
onal machine/deep learning methods struggle with, as highlighted by the drop in the baselines’ performance.

bility for Other Datasets

xamine its generalizability, MetaCovid was validated on a second dataset collected in Alavi et al.’s study Alavi et al. (2022), which
machines for detecting aberrant physiological and activity signals associated with early Covid-19 infection. The dataset consisted
step signals from 2,115 participants, of whom 278 individuals reported Covid-19-positive test results, with 84 [Fitbit:49, Apple:

uate Covid-19 infection wearable data. Due to insufficient heart rate measurements from Apple Watch users (five or fewer heart

ay), the data of Apple users were excluded. Among 45 Fitbit users, 34 were left for further analysis after applying pre-processing
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(a) (b)

Fig. 5. MetaCovid’s Performance on (a) Various Window Lengths (b) Combination of Raw Sensor and Rhythmic Features

ction 3.2. Subsequently, the raw sensor data was segmented into overlapping 2-day windows with a 1-day offset between the
e windows. The labeled dataset was created by annotating days from D−6 to D+6 as infected, records prior to D−6 as healthy,

l data after D+6, where D0 refers to symptom onset day. Figure 4(b) showcases the results of MetaCovid on Alavi’s dataset
m to the performance on Mishra’s dataset. MetaCovid achieved a precision of 0.95 and 0.83, recall of 0.97 and 0.92, AUC-
0.71, NPV of 0.95 and 0.77, and F2 score of 0.97 and 0.8 when trained with K=2 and 10 respectively. Notably, MetaCovid
ressive performance with just two shots. However, post-symptomatic Covid-19 prediction contributed the most to evaluation

tly identified 13 (38%) cases in the incubation period, 10 (29%) during D0 to D+2, delayed prediction of 7 (20%) subjects, and
ses with 2 shots, vs. 17 (50%) cases in the incubation period, 10 (29%) during D0 to D+2, delayed prediction of 3 (9%) subjects,
) cases with 10 shots.

with Previous Studies

n, we conduct a comparative analysis of MetaCovid with existing studies that aim to detect Covid-19 early using Mishra’s or
We found that on Mishra’s dataset, MetaCovid outperformed Abir et al. (2022)Bogu & Snyder (2021) in terms of both recall
n though they achieved much higher precision, for highly contagious infectious diseases such as Covid-19, which has a median
et al. (2020) (one infected person can potentially transmit the disease to 5 to 6 people), it is crucial to prioritize a lower false
et al. Cho et al. (2022) and Chung et al. Chung et al. (2023) reported quite impressive results, however, their approach requires

cal data per subject for estimating baseline behavior, making it impractical to achieve the overall goal of Covid-19 identification
ta. In contrast, MetaCovid only utilizes the past 2 days to extract features that accurately predict the subject’s Covid-19 status.
rwar et al. (2023) is the only study that utilizes a mere 24-hour data to predict Covid-19 one day before symptom onset and
ROC of 0.79, recall of 0.69, and a precision of 0.75. It is worth noting that, unlike MetaCovid, CovidRhythm uses only a subset
e model. We reproduced CovidRhythm’s result on the entire dataset and encountered a (40%) decline in the recall as the model
e varying vital signs patterns. On Alavi’s dataset, MetaCovid outperformed prior work significantly regarding the recall and F2

st of our knowledge, MetaCovid is the first work that identifies Covid-19 early with a recall of 0.81 by leveraging only two shots
ining the model and requiring only data from the previous 2 days to estimate the subject’s health status.

f Effects of Different Data Window Lengths

ims to predict Covid-19 infection early using the heart rate and step values segmented into 2-day windows with 1-day offset
ive windows. In this section, we aim to determine whether using the window of 2 days achieves the highest performance or if a
can achieve better/same results. Figure 5(a) provides the results for different window lengths. Upon analysis, we observed that
ed the highest performance when trained using 2 or 5 days. However, though the performance is promising regarding recall,
score at the length of 5, the AUC-ROC and NPV are relatively low, suggesting that MetaCovid’s ability to distinguish between
ed samples is poor. We believe that utilizing heart rate and steps from the past 5 days introduced significant variations, making
earn a generalized representation of the subject’s healthy behavior. We selected window length of 2 as it exhibits more stable
ms of AUC-ROC, NPV, and Recall. Moreover, a window length of 2 days facilitates earlier pre-symptomatic Covid-19 detection.

etaCovid’s Components

r Data vs. Rhythmic Features
tilizes raw sensor data (heart rate and step) and rhythmic features to predict Covid-19. Analysis was performed to investigate

sensor data combined with rhythmic features was the optimal approach for MetaCovid. Figure 5(b) illustrates the performance

ay significantly alter patients’ physiological signs including heart rate and step count, CovidRhythm primarily focuses on detecting Covid-19 in unvaccinated

ntly, we chose not to assess its performance on Alavi’s dataset, which contains data collected from both vaccinated and unvaccinated individuals.
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Table 4. MetaCovid vs. Previous Studies

Model Precision Recall AUC-ROC F2 Score Accuracy
Mishra’s Dataset

MetaCovid 0.82 0.81 0.78 0.81 0.81
PCovNet Abir et al. (2022) 0.95 0.23 - 0.27 -
Bogu et al. Bogu & Snyder (2021) 0.91 0.36 - 0.41 -
Cho et al. Cho et al. (2022) - - - - 0.85
CovidRhythm Sarwar et al. (2023) 0.75 0.69 0.79 0.7 0.83
Chung et al. Chung et al. (2023) - 0.86 0.89 - 0.85

Alavi’s Dataset
MetaCovid 0.83 0.92 0.71 0.9 0.81
Chung et al. Chung et al. (2023) - 0.67 0.81 - 0.79
PCovNet+ Abir et al. (2023) 0.99 0.48 - 0.53 -

rtance (FI) computed using Permutation Feature Importance. The features importance presented were averaged over 5-folds. CV = Coefficients of Variation, ICV
ient of variation, AC = Rhythm Auto-correlation, RA = Relative Amplitude, LPA = Light Intensity Physical Activity

hen trained on the combination of sensor data and rhythmic features. Our findings revealed that both could predict Covid-positive
, rhythmic features also exhibited the ability to identify healthy subjects with only a few samples achieving an NPV of 0.84 in
nsor data, with an NPV of 0.15. Overall, the fusion of both raw data and rhythmic features had the most discriminative power.

owcases the feature importance of rhythmic features computed using Permutation Feature Importance (PFI) Fisher et al. (2019).
e impact of individual features on the model’s performance by measuring the change in the model’s loss when a specific feature is
d. The primary aim is to disrupt the association between the feature and the target variable. Therefore, an increase in the model
w much the model depends on that particular feature. PFI takes the trained model fθ, feature matrix X and ground truth y, and
ginal error, i.e., eorg = L̂(y, fθ), which, in our case, is represented by Binary Cross Entropy Loss (BCE). For each feature within
FI shuffles that particular feature while keeping other features unchanged and computes the permutation error eperm. The feature
of jth feature is then calculated as:

FI j = eperm − eorg

efers to Feature importance of jth feature, eperm to BCE error with jth feature shuffled, and eorg to the original loss. Heart rate was
ost affected physiological sign, as 15 of the top 20 features relate to HR disruption. Our results align with the findings of Tsai et al.

), who reported that patients hospitalized with Covid-19 were reported to have cardiac arrhythmia. Furthermore, we also observed
s in nighttime HR were more predictive in Covid-infected patients compared to daytime HR. These findings highlight the potential

uced heart rate irregularities, particularly during nocturnal hours, to be leveraged for reliable, early detection of Covid-19.

L
shows the performance comparison of MetaCovid when trained with and without OC-MAML. Without OC-MAML, MetaCovid
tantial number of false positives and struggles to discriminate infected and healthy cases, as evidenced by its AUC-ROC score
cision of 0.28. However, the introduction of OC-MAML provided notable benefits: i) Effectively handling class imbalance, as

UC-ROC, and ii) Addressing variability in vital signs, yielding stable recall and precision.

12



Journal Pre-proof

Fig. 7. Evaluation o

5.5.3. Uncertaint
Figure 7(a) is

experienced a per
These results high

Four method
methods were sele

1. Vanilla: S
2. Scaling G
3. MCDropo

compute t
4. Ensemble

on the sam

Figure 7(b) d
achieved the high

5.6. Experiments

It is crucial t
missing values as
and step data that

5.6.1. Normaliza
Z-score norm

on early Covid-19
heart rate and step
subject’s raw data
is normalized usin
results when Meta
as the most suitab

5.6.2. Imputation
To address th

Linear interpolatio
mean and median
conducting our an

6. Discussion

Main Findin
pre-symptomatic
that variations in
Jo
ur

na
l P

re
-p

ro
of

Smart Health (2024)

(a) (b)

f (a) Effectiveness of MetaCovid’s Components. (UF refers to Uncertainty Filtering (b) Various Uncertainty Estimation Methods on MetaCovid Performance

y Filtering
a performance comparison of MetaCovid with and without Uncertainty Filtering (UF). When UF is not employed, MetaCovid

formance drop. Specifically, precision dropped by 27%, recall by 16%, NPV by 12%, AUC-ROC by 10%, and F2 score by 17%.
light the fact that MetaCovid exhibits more uncertainty regarding classifying healthy cases than infected ones.
s for computing the uncertainty estimate were selected from the probabilistic deep learning literature and compared. These
cted by considering their prevalence, scalability, and practical applicability Ovadia et al. (2019). These methods are:

igmoid probability directly from the deep model.
uo et al. (2017): Post-hoc calibration by temperature scaling the vanilla probabilities by value T.
ut Gal & Ghahramani (2016): Monto-Carlo Dropout with the value p. An example was fed into the deep model N times to
he average probability.
Lakshminarayanan et al. (2017): Average probability generated from an ensemble of identical M networks trained independently
e dataset with random initialization.

epicts MetaCovid’s performance when trained using the above-mentioned approaches. It was observed that the vanilla method
est performance, whereas MCDropout exhibited the least favorable results.

with various Pre-Processing Approaches

o preprocess the raw data appropriately to achieve optimal results. MetaCovid suggests normalizing the data and imputing any
pre-processing methods. This section sought to identify the most suitable methods for normalizing and imputing the heart rate
yield the best performance.

tion
alization has emerged as one of the most widely used methods for normalizing the physiological signs in various studies focused
detection. For MetaCovid, we explored three variations of Z-score Normalization, i.e., i) Subject-wise: Scale each subject’s
data using his/her mean and standard deviation calculated over study period Romine et al. (2020), ii) Population-wise: Each

is scaled using mean and standard deviation calculated over the entire population, and iii) Healthy Samples Only: The raw data
g mean and standard deviation calculated solely from the subject’s healthy samples Shu et al. (2020). Figure 8(a) illustrates the
Covid is trained using these variations. We found that the subject-wise normalization outperformed the other variants, emerging
le technique for normalizing the heart rate and step signals for early Covid-19 detection.

Methods
e missing values in the data, we employed five imputation techniques: Last Observed Carry Forward (LOCF), Mean, Median, and
n. LOCF replaces missing values with the most recently observed values. Mean, and Median fill missing values using day-wise

, while linear interpolation estimates the missing value by connecting nearest points to the left and right in increasing order. After
alysis (Figure 8(b)), LOCF was selected as the preferred method to handle missing values in the data.

gs: This study investigated using physiological signs (heart rate and step) collected from consumer-grade health trackers for
detection of Covid-19, i.e, during D−6 to D+6, where D0 refers to symptom onset day. Our analyses of previous work revealed

physiological signs (high intra/inter-subject variability) introduce domain shifts in the data distribution, causing traditional deep
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(a) (b)

Fig. 8. Impact of Different (a) Variations of Z-score Normalization (b) Imputation Methods on MetaCovid’s Performance

ggle to perform well, especially with limited data. Prior studies have addressed this variability using approaches such as personal-
timating the baseline using extended historical data, or training on a subset of data. However, such approaches are impractical for
scenarios.

ing enables MetaCovid to overcome vital signs variability. This is highlighted by its impressive performance, achieving a recall
.81, precision of 0.82, and AUC-ROC of 0.78 with only 2 healthy samples. Using few shots leads to accurate prediction of healthy

es, however, increasing the value of K is associated with a decline in NPV. This implies that since healthy samples inherently have
tions, the model struggles to overcome intra-subject variability as the healthy samples increase. On the other hand, increasing the

validation set either maintains the recall or enhances it further, indicating that infected cases can be effectively identified using as
, achieving the goal of Covid-19 screening with minimal data.

generalizes across different datasets. Although MetaCovid achieved a recall of 0.97, and NPV of 0.95 with 2 shots on Alavi’s
the contribution towards evaluation metrics came from post-symptomatic identification. We hypothesize that this may be because
rises of vaccinated individuals, which can potentially weaken pre-Covid symptoms. With only two healthy samples, the model
ulties in learning healthy subject patterns and distinguishing it from abnormal samples before symptom onset. Our assumption was
results with K=10, where MetaCovid obtained a recall of 0.92, however, it identified 50% subjects as infected before symptom
to 38% with K=2. Notably, with K=10, the NPV drops to 0.77, aligning with our earlier finding that increasing K leads to

ercoming intra-subject vital signs variability.

and step from the preceding 2 days can reliably identify pre-symptomatic Covid-19. While some studies have reported
s for early detection of Covid-19, they need data from the past 28 days for estimating the individual’s baseline behavior Chung
contrast, MetaCovid only uses the heart rate and step measurements from the preceding 2 days, reducing the data requirement by
lly, it was observed that a window length of 5, which used 5 days of historical data, yields the highest recall of 0.89. However,
OC and NPV indicate that the model struggles to detect healthy subjects accurately. Our findings implied that deviations in the
ns from the preceding 1 or 2 days are sufficient for predicting healthy and infected samples. After 2 days, although the recall was
overall performance dropped.

features had the most discriminative power for early Covid-19 identification. In contrast, raw sensor data only identified
s accurately, but failed to detect healthy subjects. On the other hand, rhythmic features (daily steps, night-time HR, daytime
5) achieved stable performance regarding both recall and NPV. When both sensor data and rhythmic features were employed to
, rhythmic features primarily identified healthy subjects, while both feature sets contributed equally to predicting Covid-positive
ll features, heart rate parameters had the most discriminative power, revealing that the disruptions in the heart rate, specifically at
more pronounced in Covid-19 patients.

ations Despite achieving encouraging results, our work had a few limitations. First, the study focused exclusively on Fitbit users
representative of the general population. Second, symptom-onset dates were self-reported and may be incorrect. Third, the dataset
ificant number of missing values, forcing us to: i) Omit data collected on several days, which also reduced the size of the dataset
esulted in the loss of valuable information, and ii) Perform analyses using a 1-hour resolution. Increasing resolution to minutes
capture abnormal physiological signs more accurately. Lastly, other health conditions such as influenza, chronic pain, and stress

heart rate and physical activity and confound results. To strengthen our findings, additional research with a more diverse dataset
jects that have these confounding conditions is required to distinguish disruptions in physiological signs caused by Covid from

ors.

rk In the future, we aim to investigate the following ideas: i) Validate our results on a more extensive and diverse dataset that
9-positive patients, healthy controls, and subjects with infections other than Covid-19 ii) Evaluation of potential enhancements of

plying other advanced neural networks architectures and anomaly detection techniques iii) Reproduce results using the data from
models of wearables iv) As one’s work routine immensely impacts physical activity, investigate the impact of heart rate or resting

erved in prior studies in order to address challenges posed by intra-subject variability.
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ng, which utilizes machine learning methods to analyze physiological data from consumer-grade wearables has opened new
assive assessment of infectious diseases including Covid-19. However, humans exhibit substantial individual differences in vital
lenges for conventional deep models to perform convincingly. To address the vital signs variability among subjects, this study
ovid, which employs meta-learning for screening Covid-19 from heart rate and steps collected using Fitbit. MetaCovid extracts
iomarkers using a 2-day window, which is combined with raw sensor data and input to a deep GRU-based attention network for
rigorous evaluation, MetaCovid outperformed all baselines, achieving a recall and F2 score of 0.81, precision of 0.82, NPV OF
OC of 0.78 with only two shots per subject. MetaCovid generalized well on two different Covid-19 datasets, identifying 61%

50% (17 out of 34) subjects before symptom onset. Remarkably, Covid infection can be accurately detected using only heart
surements over 2 days compared to 28 days required by state-of-art methods, reducing data requirement by 93%. We believe
meta-learning approach and insights from our study will pave the path for devising innovative interventions with limited data for
ead of infectious diseases in future.
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