

CS 543: Computer Graphics

Transformations

Robert W. Lindeman

Associate Professor
Interactive Media & Game Development
Department of Computer Science
Worcester Polytechnic Institute
gogo@wpi.edu

(with lots of help from Prof. Emmanuel Agu :-)

Introduction to Transformations

- A transformation changes an object's
 - Size (scaling)
 - Position (translation)
 - Orientation (rotation)
 - Shape (shear)
- \square We will introduce first in 2D or (x,y), build intuition
- □ Later, talk about 3D and 4D?
- □ Transform object by applying sequence of matrix multiplications to object vertices

Why Matrices?

- All transformations can be performed using matrix/vector multiplication
- Allows pre-multiplication of all matrices
- ■Note: point (x, y) needs to be represented as (x, y, 1), also called homogeneous coordinates

Point Representation

■ We use a column matrix (2x1 matrix) to represent a 2D point

$$\begin{pmatrix} x \\ y \end{pmatrix}$$

General form of transformation of a point (x, y) to (x', y') can be written as:

$$x' = ax + by + c$$

$$y' = dx + ey + f$$
or
$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Translation

- To reposition a point along a straight line
- \square Given point (x, y) and translation distance (t_x, t_y)
- □ The new point: (x', y')

$$x' = x + t_x$$
$$y' = y + t_y$$

or

$$P' = P + T$$
 where $P' = \begin{pmatrix} x' \\ y' \end{pmatrix}$ $P = \begin{pmatrix} x \\ y \end{pmatrix}$ $T = \begin{pmatrix} t_x \\ t_y \end{pmatrix}$

$$P' = \begin{pmatrix} x' \\ y' \end{pmatrix}$$

$$P = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$T = \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

3x3 2D Translation Matrix

$$x' = x + t_x$$
$$y' = y + t_y$$

use 3x1 vector

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Note: it becomes a matrix-vector multiplication

Translation of Objects

How to translate an object with multiple vertices?

2D Scaling

□Scale: Alter object size by scaling factor (sx, sy). *i.e.*,

$$x' = x * Sx$$

 $y' = y * Sy$

3x3 2D Scaling Matrix

$$x' = x * Sx$$

 $y' = y * Sy$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} Sx & 0 & 0 \\ 0 & Sy & 0 \\ 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Shearing

- Y coordinates are unaffected, but x coordinates are translated linearly with y
- □ That is

$$x' = x + y*h$$

$$y' = y$$

h is fraction of y to be added to x

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & h & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

2D Rotation

 \square Default rotation center is origin (0,0)

 $\theta > 0$: Rotate counter clockwise

 θ < 0 : Rotate clockwise

2D Rotation (cont.)

(x,y) -> Rotate about the origin by θ

How to compute (x', y')?

$$x = r*cos(\phi)$$
 $x' = r*cos(\phi + \theta)$
 $y = r*sin(\phi)$ $y' = r*sin(\phi + \theta)$

2D Rotation (cont.)

□Using trig. identities

$$\cos(\theta + \phi) = \cos\theta \cos\phi - \sin\theta \sin\phi$$
$$\sin(\theta + \phi) = \sin\theta \cos\phi + \cos\theta \sin\phi$$

$$x' = x \cos(\theta) - y \sin(\theta)$$

 $y' = x \sin(\theta) + y \cos(\theta)$

Matrix form?

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

3x3 2D Rotation Matrix

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

2D Rotation

□ How to rotate an object with multiple vertices?

Arbitrary Rotation Center

- □ To rotate about arbitrary point P = (Px, Py) by θ :
 - Translate object by T(-Px, -Py) so that P coincides with origin
 - Rotate the object by $R(\theta)$
 - Translate object back: T(Px, Py)
- □ In matrix form
 - $T(Px,Py) R(\theta) T(-Px,-Py) * P$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & Px \\ 0 & 1 & Py \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -Px \\ 0 & 1 & -Py \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

□ Similar for arbitrary scaling anchor

Composing Transformations

- Composing transformations
 - Applying several transforms in succession to form one overall transformation
- Example
 - M1 X M2 X M3 X P
 where M1, M2, M3 are transform matrices applied to P
- Be careful with the order!
- □ For example
 - Translate by (5, 0), then rotate 60 degrees is NOT same as
 - Rotate by 60 degrees, then translate by (5, 0)

OpenGL Transformations

- □ Designed for 3D
- □ For 2D, simply ignore *z* dimension
- □ Translation:
 - glTranslated(tx, ty, tz)
 - \blacksquare glTranslated(tx, ty, 0) => for 2D
- □ Rotation:
 - glRotated(angle, Vx, Vy, Vz)
 - glRotated(angle, 0, 0, 1) => for 2D
- □ Scaling:
 - glScaled(sx, sy, sz)
 - \blacksquare glScaled(sx, sy, 0) => for 2D

3D Transformations

- Affine transformations
 - Mappings of points to new points that retain certain relationships
 - Lines remain lines
 - Several transformations can be combined into a single matrix
- □ Two ways to think about transformations
 - Object transformations
 - □ All points of an object are transformed
 - Coordinate transformations
 - □ The coordinate system is transformed, and models remain defined relative to this

3D Transformations (cont.)

- □ Scale
 - glScaled(sx, sy, sz): Scale object by (sx, sy, sz)
- □ Translate
 - glTranslated(dx, dy, dz): Translate object by (dx, dy, dz)
- □ Rotate
 - glRotated(angle, ux, uy, uz): Rotate by angle about an axis passing through origin and (ux, uy, uz)
- OpenGL
 - Creates a matrix for each transformation
 - Multiplies matrices together to form a single, combined matrix
 - Transformation matrix is called modelview matrix

Example: Translation

- The vertices of an object are mapped to new points
 - Similarly for scaling and rotation

OpenGL Matrices

□ Graphics pipeline takes all vertices through a series of operations

WPI

OpenGL Matrices and the Pipeline

- OpenGL uses three matrices for geometry
 - Modelview matrix
 - Projection matrix
 - Viewport matrix
- Modelview matrix
 - Combination of modeling matrix M and camera transforms V
- Other OpenGL matrices include texture and color matrices
- □ glMatrixMode command selects matrix mode
- □ **glMatrixMode** parameters
 - GL_MODELVIEW, GL_PROJECTION, GL_TEXTURE, etc.
- May initialize matrices with glLoadIdentity()

OpenGL Matrices and the Pipeline

- OpenGL matrix operations are 4x4 matrices
- Graphics card
 - Fast 4x4 multiplier -> tremendous speedup

View Frustum

- □ Side walls determined by window borders
- Other walls are programmer defined
 - Near clipping plane
 - Far clipping plane
- □ Transform 3D models to 2D
 - Project points/vertices inside view volume onto view window using parallel lines along z-axis

Types of Projections

- □ Different types of projections?
 - Different view volume shapes
 - Different visual effects
- Example projections
 - Parallel (a.k.a. orthographic)
 - Perspective
- □ Parallel is simple
- Will use this for intro, expand later

OpenGL Matrices and the Pipeline

- □ Projection matrix
 - Scales and shifts each vertex in a particular way
 - View volume lies inside cube of -1 to 1
 - Reverses sense of z
 - \square increasing z = increasing depth
 - Effectively squishes view volume down to cube centered at 1
- Clipping in 3D then eliminates portions outside view frustum
- □ Viewport matrix:
 - Maps surviving portion of block (cube) into a 3D viewport
 - Retains a measure of the depth of a point