g [Introduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4_“\
The Umversity o' N

WebGL Transformations

Ed Angel
Professor Emeritus of Computer Science
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

I Objectives

Umversity ol New Mexico

_earn how to carry out transformations in
WebGL

- Rotation
- Translation
- Scaling
* Introduce MV.js transformations

- Model-view
- Projection

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

~&" Pre 3.1 OpenGL Matrices

*In Pre 3.1 OpenGL matrices were part of
the state

* Multiple types
- Model-View (GL._MODELVIEW)
- Projection (GL_ PROJECTION)

- Texture (GL_TEXTURE)
- Color(GL_COLOR)

 Single set of functions for manipulation

 Select which to manipulated by
-glMatrixMode (GL_MODELVIEW) ;

wedaMatrixMode (GL, PROJEGTLION). /

U Why Deprecation

* Functions were based on carrying out the
operations on the CPU as part of the fixed
function pipeline

 Current model-view and projection
matrices were automatically applied to all
vertices using CPU

* \We will use the notion of a current
transformation matrix with the
understanding that it may be applied in
the shaders

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4_“\
The Umversity ol New Mexico

vertices

Current Transformation
Matrix (CTM)

* Conceptually there is a 4 x 4 homogeneous
coordinate matrix, the current transformation
matrix (CTM) that is part of the state and is
applied to all vertices that pass down the
pipeline

 The CTM is defined in the user program and
loaded into a transformation unit

l C

CTM

’

p =Cp

> vertices

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

- CTM operations

myersity ol New Mexico

 The CTM can be altered either by loading a new
CTM or by postmutiplication

Load an identity matrix: C < I
Load an arbitrary matrix: C < M

Load a translation matrix;: C < T
Load a rotation matrix: C < R
Load a scaling matrix: C < S

Postmultiply by an arbitrary matrix: C < CM
Postmultiply by a translation matrix: C <= CT
Postmultiply by a rotation matrix: C < C R
Postmultiply by a scaling matrix: C <= C S

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

{m ? Rotation about a Fixed Point

Start with identity matrix: C <— 1
Move fixed point to origin: C <~ CT
Rotate: C < CR

Move fixed point back: C < CT !

Result: C=TR T ! which is backwards.

This result 1s a consequence of doing postmultiplications.
Let s try again.

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

~ Reversing the Order

myersity ol New Mexico

WewantC=T'RT
so we must do the operations in the following order

C<1
C<CT"!
C<CR
C<—CT

Each operation corresponds to one function call in the
program.

Note that the last operation specified is the first
executed in the program

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

~ CTM in WebGL

Umversity ol New Mexico

* OpenGL had a model-view and a projection
matrix in the pipeline which were
concatenated together to form the CTM

* We will emulate this process

Vertices o Vertices
= Model-view —m» Projection -

| |
|
CTM

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

—_

{m - Using the ModelView Matrix

* In WebGL, the model-view matrix is used to

- Position the camera

Can be done by rotations and translations but is
often easier to use the lookAt function in MV js

- Build models of objects

* The projection matrix is used to define the
view volume and to select a camera lens

* Although these matrices are no longer part of
the OpenGL state, it is usually a good strategy
to create them in our own applications

= P*MV*

Angel and Shreiner: Interactive %omputer GraphicsEE © Addison-Wesley 2015

{!.. Rotation, Translation, Scaling

Create an identity matrix:

var m = mat4d () ;

Multiply on right by rotation matrix of theta in degrees
where (vx, vy, vz)define axis of rotation

var r = rotate(theta, vx, vy, vz)
m = mult(m, r);

Also have rotateX, rotateY, rotateZ
Do same with translation and scaling:

var s = scale(sx, sy, sz)
var t = translate(dx, dy, dz);

m = mult(s, t);
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

—_

- Example

myersity ol New Mexico

» Rotation about z axis by 30 degrees with a fixed
point of (1.0, 2.0, 3.0)

var m = mult(translate (1.0, 2.0, 3.0),
rotate(30.0, 0.0, 0.0, 1.0));
m = mult(m, translate(-1.0, -2.0, -3.0));

 Remember that last matrix specified in the program
is the first applied

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

—_

U Arbitrary Matrices

* Can load and multiply by matrices defined in
the application program

* Matrices are stored as one dimensional array
of 16 elements by MV.js but can be treated as
4 x 4 matrices in row major order

* OpenGL wants column major data

* gl.unifromMatrix4f has a parameter for
automatic transpose by it must be set to false.

* flatten function converts to column major
order which is required by WebGL functions

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

—_

*l._“‘ % Matrix Stacks

 In many situations we want to save
transformation matrices for use later

- Traversing hierarchical data structures (Chapter 9)

*Pre 3.1 OpenGL maintained stacks for each
type of matrix

« Easy to create the same functionality in JS

- push and pop are part of Array object
var stack =[]
stack.push(modelViewMatrix);
modelViewMatrix = stack.pop();

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

—_

