
1

Introduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

2

WebGL Transformations

Ed Angel
Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

3

Objectives

• Learn how to carry out transformations in
WebGL

- Rotation
- Translation
- Scaling

• Introduce MV.js transformations
- Model-view
- Projection

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4

Pre 3.1 OpenGL Matrices

• In Pre 3.1 OpenGL matrices were part of
the state

• Multiple types
- Model-View (GL_MODELVIEW)
- Projection (GL_PROJECTION)
- Texture (GL_TEXTURE)
- Color(GL_COLOR)

• Single set of functions for manipulation
• Select which to manipulated by
- glMatrixMode(GL_MODELVIEW);
- glMatrixMode(GL_PROJECTION); Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Why Deprecation

• Functions were based on carrying out the
operations on the CPU as part of the fixed
function pipeline

• Current model-view and projection
matrices were automatically applied to all
vertices using CPU

• We will use the notion of a current
transformation matrix with the
understanding that it may be applied in
the shaders

5Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

6

Current Transformation
Matrix (CTM)

• Conceptually there is a 4 x 4 homogeneous
coordinate matrix, the current transformation
matrix (CTM) that is part of the state and is
applied to all vertices that pass down the
pipeline

• The CTM is defined in the user program and
loaded into a transformation unit

CTM vertices vertices
p p’=Cp

C

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

7

CTM operations

• The CTM can be altered either by loading a new
CTM or by postmutiplication

Load an identity matrix: C ← I
Load an arbitrary matrix: C ← M

Load a translation matrix: C ← T
Load a rotation matrix: C ← R
Load a scaling matrix: C ← S

Postmultiply by an arbitrary matrix: C ← CM
Postmultiply by a translation matrix: C ← CT
Postmultiply by a rotation matrix: C ← C R
Postmultiply by a scaling matrix: C ← C S
 Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

8

Rotation about a Fixed Point

Start with identity matrix: C ← I
Move fixed point to origin: C ← CT

Rotate: C ← CR
Move fixed point back: C ← CT -1

Result: C = TR T –1 which is backwards.

This result is a consequence of doing postmultiplications.
Let’s try again.

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

9

Reversing the Order

We want C = T –1 R T
so we must do the operations in the following order

C ← I
C ← CT -1
C ← CR
C ← CT

Each operation corresponds to one function call in the

program.

Note that the last operation specified is the first

executed in the program

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1
0

CTM in WebGL

• OpenGL had a model-view and a projection
matrix in the pipeline which were
concatenated together to form the CTM

• We will emulate this process

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1
1

Using the ModelView Matrix

• In WebGL, the model-view matrix is used to
- Position the camera

• Can be done by rotations and translations but is
often easier to use the lookAt function in MV.js

- Build models of objects
• The projection matrix is used to define the
view volume and to select a camera lens

• Although these matrices are no longer part of
the OpenGL state, it is usually a good strategy
to create them in our own applications

q = P*MV*p
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1
2

Rotation, Translation, Scaling

var r = rotate(theta, vx, vy, vz)
m = mult(m, r);

var s = scale(sx, sy, sz)
var t = translate(dx, dy, dz);
m = mult(s, t);

var m = mat4();

Create an identity matrix:

Multiply on right by rotation matrix of theta in degrees
where (vx, vy, vz) define axis of rotation

Also have rotateX, rotateY, rotateZ
Do same with translation and scaling:

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1
3

Example

• Rotation about z axis by 30 degrees with a fixed
point of (1.0, 2.0, 3.0)

• Remember that last matrix specified in the program
is the first applied

var m = mult(translate(1.0, 2.0, 3.0),
 rotate(30.0, 0.0, 0.0, 1.0));
m = mult(m, translate(-1.0, -2.0, -3.0));

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1
4

Arbitrary Matrices

• Can load and multiply by matrices defined in
the application program

• Matrices are stored as one dimensional array
of 16 elements by MV.js but can be treated as
4 x 4 matrices in row major order

• OpenGL wants column major data
• gl.unifromMatrix4f has a parameter for
automatic transpose by it must be set to false.

• flatten function converts to column major
order which is required by WebGL functions

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1
5

Matrix Stacks

• In many situations we want to save
transformation matrices for use later

- Traversing hierarchical data structures (Chapter 9)
• Pre 3.1 OpenGL maintained stacks for each
type of matrix

• Easy to create the same functionality in JS
- push and pop are part of Array object
var stack = []
stack.push(modelViewMatrix);
modelViewMatrix = stack.pop();
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

