

## Introduction to Computer Graphics with WebGL

# Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science Laboratory University of New Mexico



#### **Applying Transformations**

# Ed Angel Professor Emeritus of Computer Science University of New Mexico



#### **Using Transformations**

- Example: Begin with a cube rotating
- Use mouse or button listener to change direction of rotation
- Start with a program that draws a cube in a standard way
  - Centered at origin
  - Sides aligned with axes
  - Will discuss modeling in next lecture



### Where do we apply transformation?

- Same issue as with rotating square
  - in application to vertices
  - in vertex shader: send MV matrix
  - in vertex shader: send angles
- Choice between second and third unclear
- Do we do trigonometry once in CPU or for every vertex in shader
  - GPUs have trig functions hardwired in silicon



#### **Rotation Event Listeners**

```
document.getElementById( "xButton" ).onclick =
   function () { axis = xAxis; };
 document.getElementById( "yButton" ).onclick =
   function () { axis = yAxis; };
 document.getElementById( "zButton" ).onclick =
   function () { axis = zAxis; };
function render(){
 gl.clear( gl.COLOR BUFFER BIT | gl.DEPTH BUFFER BIT );
 theta[axis] += 2.0;
 gl.uniform3fv(thetaLoc, theta);
 gl.drawArrays( gl.TRIANGLES, 0, NumVertices );
 requestAnimFrame( render );
```



#### **Rotation Shader**

```
Attribute vec4 vPosition;
Attribute vec4 vColor;
varying vec4 fColor;
uniform vec3 theta;
void main() {
  vec3 angles = radians( theta );
 vec3 c = cos(angles);
 vec3 s = sin(angles);
  // Remember: these matrices are column-major
 mat4 rx = mat4(1.0, 0.0, 0.0, 0.0,
                 0.0, c.x, s.x, 0.0,
                 0.0, -s.x, c.x, 0.0,
                 0.0, 0.0, 0.0, 1.0);
```



#### **Rotation Shader (cont)**



#### **Smooth Rotation**

- From a practical standpoint, we are often want to use transformations to move and reorient an object smoothly
  - Problem: find a sequence of model-view matrices  $M_0, M_1, \ldots, M_n$  so that when they are applied successively to one or more objects we see a smooth transition
- For orientating an object, we can use the fact that every rotation corresponds to part of a great circle on a sphere
  - Find the axis of rotation and angle
  - Virtual trackball (see text)



#### **Incremental Rotation**

- Consider the two approaches
  - For a sequence of rotation matrices  $R_0$ ,  $R_1$ , ....,  $R_n$ , find the Euler angles for each and use  $R_i = R_{iz} R_{iy} R_{ix}$ 
    - Not very efficient
  - Use the final positions to determine the axis and angle of rotation, then increment only the angle
- Quaternions can be more efficient than either



#### Quaternions

- Extension of imaginary numbers from two to three dimensions
- Requires one real and three imaginary components i, j, k

$$q = q_0 + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k}$$

- Quaternions can express rotations on sphere smoothly and efficiently. Process:
  - Model-view matrix → quaternion
  - Carry out operations with quaternions
  - Quaternion → Model-view matrix



#### **Interfaces**

- One of the major problems in interactive computer graphics is how to use a twodimensional device such as a mouse to interface with three dimensional objects
- Example: how to form an instance matrix?
- Some alternatives
  - Virtual trackball
  - 3D input devices such as the spaceball
  - Use areas of the screen
    - Distance from center controls angle, position, scale depending on mouse button depressed