Viewing

Cliff Lindsay, Ph.D.
WPI

Building Virtual Camera Pipeline

e Used To View Virtual Scene
e First Half of Rendering Pipeline Related To Camera

e Takes Geometry From Application To Rasterization
Stages

Virtual Camera

Transformed
Raw Vertices Vertices & Processed
& Primitives Primitives Fragments Fragments Pixels _ Display
Vertex Fragment
Processor ‘ Rasterizer Processor Outp.ut
(Programmable) (Programmable) SR —=

/\\ ,\\ w7
’ /!
3D ,"“.\30 09,30 2D array of
/ 0@ ; 900
2 N color-values
/00000 /00000,
-0 *=--Q0\
- S=-a

3D Viewing and View Volume

Now:
: Set view volume
Previously:
Lookat() to set P
camera position Yviawing
volume

N

camera @

tripod

Different View Volume Shapes

Perspective view volume

Orthogonal view volume (exhibits foreshortening)

(no foreshortening)

e Different view volume => different look
e Foreshortening? Near objects bigger

& =7 .
AR
1!/7'..-?i.
ANEREC =

View Volume Parameters

e Need to set view volume parameters
Projection type: perspective, orthographic, etc.
Field of view and aspect ratio
Near and far clipping planes

Field of View

e View volume parameter
e Determines how much of world in picture (vertically)
e Larger field of view = smaller the objects are drawn

field of view center of projection

(view angle) \

Near and Far Clipping Planes

e Only objects between near and far planes drawn

Far plane

Viewing Frustrum

e Near plane + far plane + field of view = Viewing Frustum
e Objects outside the frustum are clipped

Near plane \ Far plane

¥

Viewing Frustum

Setting up View Volume/Projection Type

e Previous OpenGL projection commands deprecated!!
e Perspective view volume/projection:

gluPerspective(fovy, aspect, near, far) or
glFrustum(left, right, bottom, top, near, far)

e Orthographic: _
glOrtho(left, right, bottom, top, near, far) ‘%’%ﬂ

e Useful functions, so we implement similar inmv . js

Perspective(fovy, aspect, near, far) or
Frustum(left, right, bottom, top, near, far)
Ortho(left, right, bottom, top, near, far)

\ What are these
arguments? Next!

Perspective(fovy, aspect, near, far)

e Aspect ratio used to calculate window width

Near plane

Frustum(left, right, bottom, top, near, far)

e Can use Frustrum() in place of Perspective()
e Same view volume shape, different arguments

left top

near and far measured from camera

Ortho(left, right, bottom, top, near, far)

e For orthographic projection

L

right

near
far

near and far measured from camera

Example Usage:
Setting View Volume/Projection Type

void display ()

{

// clear screen

glClear (GL_COLOR_BUFFER_BIT) ;
// Set up camera position
LookAt(0,0,1,0,0,0,0,1,0);

ooooooooooo

// set up perspective transformation
Perspective (fovy, aspect, near, far);

oooooooooo

// draw something
display all(); // your display routine

Review

e Setting Up & Moving The Camera
e Look At Function

e View Volumes

e Near & Far Clipping Planes

Taxonomy of Planar Geometric Projections

planar geometric projections

parallel perspective

S ‘1 point 2 point 3 point
multiview axonometric oblique
orthographic

iIsometric dimetric trimetric

15

Perspective Projection
e After setting view volume, then projection transform
e Projection?
e Classic: Converts 3D object to corresponding 2D on screen

e How? Draw line from object to projection center

e Calculate where each cuts projection plane

Projectors \

¥— QObject in 3 space

Projected image

Ao\

VRP

% ¥~cop

Perspective projection (P) ca e

Orthographic Projection

e How? Draw parallel lines from each object vertex
e The projection center is at infinite
e In short, use (x,y) coordinates, just drop z coordinates

12"
C|iF’p
F2~"1of "
Ay
T
% %
Triangle

Pr.ojectio_n of X In 3Dg
Triangle in 2D

e Orthographic projection (O)

Homogeneous Coordinate Representation

X, =X
YoT ¥
Z,=

w.=1

N\

Vertices before
Projection

Vertices after
Projection

M

o o O M

p,= Mp

oS O = O

o O O O

default orthographic projection

Default
Projection
Matrix

— o o g

In practice, can let M =1, set the z term to zero later

Default View Volume/Projection?

e What if you user does not set up projection?
e Default on most systems is orthogonal (Ortho());
e To project points within default view volume

/N

Vertices before | | Vertices after
Projection Projection

Triangle

Projection of
Triangle in 2D In3b

The Problem with Classic Projection

e Keeps (x,y) coordintates for drawing, drops z
e We may need z. Why?

Projectors \

¥~ QObject in 3 space

Projected image

VRP

R‘\COP

X, =X
yp B y Clacsic Prorect Broject . VertexTriangle
z,= 0 «_ | Llassic Projection rojection o In 3D

Loses z value Triangle in 2D

Normalization: Keeps z Value

e Most graphics systems use view normalization

e Normalization: convert all other projection types to
orthogonal projections with the default view volume

Perspective transform
matrix

_ %\S Default view volume

/ Clipping against it

Ortho transform
matrix

Parallel Projection

e normalization = find 4x4 matrix to transform user-specified
view volume to canonical view volume (cube)

(right,top,-far)
User-specified)
View Volume 1,1.-1]
—
Canonical
®
(_ 1 ' 1 ’ 1)

View Vol
(left, bottom,-near) iew Volume

For Exampl: glOrtho(left, right, bottom, top, near, far)

Parallel Projection: Ortho
e Parallel projection: 2 parts

1.

S O = O

Thus translation factors:

-(right + left)/2, -(top + bottom)/2, -(far+near)/2

0O —(right+left)/?2
O —(top+bottom)/ 2
1 —(far+near)/2
0 1

(left, bottom,-near)

\

/

Translation: centers view volume at origin

(right,top,-far)

Parallel Projection: Ortho
2. Scaling: reduces user-selected cuboid to canonical
cube (dimension 2, centered at origin)

e Scaling factors: 2/(right - left), 2/(top - bottom), 2/(far -

near)

2 0 0
right — left

0 2 0

top — bottom

2
0 0 0
far — near right top -far

0 0 0 1 (9 AR)

=k

(;"i‘l_‘illi)

(left, bottom,-near)

Parallel Projection: Ortho

Concatenating Translation x Scaling, we get Ortho Projection matrix

2
right — left

0

0

0

0
2 0
top — bottom
0 2
far — near
0 0
2
right — left
0
ST =
0
0

0 (1
0
0
X 0
0
I \0
2
top — bottom
0

0

0O O —(right+left)/2)
1 0 —(top+bottom)/?2
O 1 —(far+near)/?2
0O O 1)

0 _ right =left |

right — left
0 _ top +bottom
top — bottom

2 far + near
near — far far — near

0 1

Final Ortho Projection

e Setz=0

e Equivalent to the homogeneous coordinate
transformation

Morth -

o O O O
— o o 9

oS O = O

T o o ~

e Hence, general orthogonal projection in 4D is
P=M_,ST

Perspective Projection

e Projection — map the object from 3D space to
2D screen

. i 2
Perspective() /
Frustrum() =

Perspective Projection

Projectors \

¥—QObject in 3 space

Projected image

Ao\

VRP

L “~cop
Projection plane
LY (X,Y,2)
v b - Based on similar triangles:
(X 1Y 1z)//,/"/
(0,0,0) % y'_ _N
T | , -2 y -Z
f N
N
-Z |:> y' = yX—
-Z

Eye (COP) Near Plane

Perspective Projection

e So (x*,y*) projection of point, (x,y,z) unto near plane N is
given as:

(x*,y*){va,yfv]
e Numerical example:

Q. Where on the viewplane does P = (1, 0.5, -1.5) lie for a
near planeat N =17

(%, y*)=| x N ,yN - 1xi,0.5xi = (0.666,0.333)
-z -z 1.5 1.5

Pseudodepth

e Classical perspective projection projects (x,y) coordinates to
(x*, y*), drops z coordinates

Map to same (x*,y*)

Projectors .
) 4 Compare their z values

*—QObject in 3 space

Projected image

e (0,0,0)

COopP > , > Z

e But we need z to find closest object (depth testing)!!!

Perspective Transformation

e Perspective transformation maps actual z distance of
perspective view volume to range [-1 to 1] (Pseudodepth)
for canonical view volume

/

 Actual depth

Near T

l

<

[
P

I~

Far

Actual view volume

Pseudlodepth| Canonical view volume

We want perspective
Transformation and
NOT classical projection!!

Set scaling z
Pseudodepth = az + b
Next solve foraand b

Perspective Transformation using
Pseudodepth

—Z —Z —Z

(x*,y*,z*)=(xN N N ,az +b]

e Choose a, b so as z varies from Near to Far, pseudodepth z*

varies from =1 to 1 (canonical cube)
/ Actual view
volume

e Boundary conditions
 Actual depth

z*¥ =-1whenz=-N > >,
z¥=1whenz=-F
Nea\ Far
 Pseudodepth
Canonical view >
volume Z*

Transformation of z: Solve foraand b

e Solving:

% az+b
—Z
e Use boundary conditions
z* =-1whenz=-N......... (1)

z*=1whenz=-F......... (2)
e Set up simultaneous equations

~ —aN +b

N
~ —alF +b

F

-1

= —-N=-aN +b........ (1)

1 = F=-aF +b........ (2)

Transformation of z: Solve foraand b

e Add eqgns (2) and (3)
F+ N =aN -aF

_F+N -(F+N)
N-F F-N

e Now put (4) back into (3)

= d

Transformation of z: Solve foraand b

e Put solution for a back into eqn (3)

= N = -b
F-N
:>b=_N_—N(F+N)
F-N
:b_—N(F—N)—N(F+N)_—NF—N2—NF+N2_—2NF
F-N F-N F-N
e SO
—(F —
e (F +N) p_ ~2FN

F-N F-N

What does this mean?

e Original point z in original view volume,

transformed into z* in canonical view volume

Original P c;lt:::eVieW
L az+ b vertex z value
Z =
—z
Near Far
e where -
_=(F+N)
F-N Transformed P Canonical view
vertex z* value volume

—2FN
b=——

F-N

Homogenous Coordinates

e Want to express projection transform as 4x4 matrix
e Previously, homogeneous coordinates of
P = (Px,Py,Pz) => (Px,Py,Pz,1)
e Introduce arbitrary scaling factor, w, so that
P = (wPx, wPy, wPz, w) (Note: w is non-zero)
e For example, the point P =(2,4,6) can be expressed as
(2,4,6,1)
or (4,8,12,2) where w=2
or (6,12,18,3) where w =3, or....

e To convert from homogeneous back to ordinary coordinates,
first divide all four terms by w and discard 4t term

Perspective Projection Matrix

e Recall Perspective Transform

(x*,y*,z*)=(xN N N ’az +b]

-z -z -z
. N N az+b
e We have: ._ N pr=p S
-7z —-Z - Z
e In matrix form: N
(N 0 0 O\/wx\ (wNx T
O N 0 O]fwy wNy Vv N
- = .
O O a bl wz w(az + b) az +Zb
\ O O -1 OoONw \ —wz) _ -
1
Perspective Original Transformed ransfor|/11ed Vertex
Transform Matrix vertex Vertex

after dividing by 4th term

Perspective Projection Matrix

(N
(N 0 0 O\ wP.\ (wNP, .
N
0O N O O} wph, _ wNP, | y—
0O O b || wpP w(aP. +b) s+ b
0 0 -1 O w .\ —wEP _IZ
\

F-N F-N

e In perspective transform matrix, already solved for a
and b:

e So, we have transform matrix to transform z
values

Perspective Projection

e Not done yet!! Can now transform z!

e Also need to transform the x = (left, right) and y = (bottom, top)

ranges of viewing frustum to [-1, 1]

e Similar to Orthographic, we need to translate and scale previous
matrix along x and y to get final projection transform matrix

e we translate by
—(right + left)/2 in x

Ay

top
-(top + bottom)/2 iny
e Scale by:
2/(right — left) in x
2/(top — bottom) iny
-1
bottom
left right

Perspective Projection

e Translate along x and y to line up center with origin of CVV
—(right + left)/2 in x
-(top + bottom)/2 iny

e Multiply by translation matrix:
0 0 —(right+left)/2

1 Ay
O 1 O —(top+bottom)/?2 top
0O 0 1 0
O O O 1
_— Vx
Line up centers /
Along x and y 1 -1
bottom

Perspective Projection

e To bring view volume size down to size of of CVV, scale by
2/(right — left) in x
2/(top — bottom) iny

e Multiply by scale matrix:

2

; 0 0 A y
right — left
0 2 0 0 top
top — bottom \ I
0 0 1 0
0 0 0 1
_—] Vx
Scale size down /
along x and y ’ 1 -1 \
g bottom

left right

Perspective Projection Matrix

Previous
Perspective
Transform
Scale Translate Matrix
2 0
right —lofi 0 1 0 0 —(right+lefty/2\ (N O 0 O
0 2 0 0 O 1 O —(top+bottom)/?2 O N O O
X X
top — bottom O 0 1 0 0O O b
0 0 1 0f 1o 0 o 1 0 0 -1 0
0 0 0 1
2N right + left
right — left right — left
0 2N top + bottom
|:> top — bottom top - bottom Final Perspective
0 0 -(F+N) -2FN Transform Matrix
F-N F-N
0 0 -1 0

glFrustum(left, right, bottom, top, N, F)

N = near plane, F = far plane

Normalization Transformation

distorted object
z=x projects correctly

N ya \ oo

z = -far
\< . / — =]

Z = -near
/ \)< /
original clipping 5, /]

volume original object new clipping T
volume

Top View of before & after normalization

Implementation

e Set modelview and projection matrices in application program
e Pass matrices to shader

void display() {
model view = LookAt (eye, at, up);
Ortho (left, right, bottom, top, near, far);

projection

// pass model view and projection matrices to shader
glUniformMatrix4fv (matrix loc, 1, GL TRUE, model view);
glUniformMatrix4fv (projection loc, 1, GL TRUE, projection);

Implementation

e And the corresponding shader

in vec4 vPosition;

in vec4 vColor;

Out vec4d color;

uniform mat4 model view;

Uniform matd4 projection;

void main()

{

gl Position = projection*model view*vPosition;

color = vColor;

Perspective projection (P)

Perspective projection (P)

From Computer Desktop Encyclopedia
Reproduced with permission.
@ 1998 Intergraph Computer Systems

-
he}
-
hy
0N
b
.
.

viewing
frustum

R
.
.
.~
-
.

near .)
clip plane Viewpoint

