Computer Graphics (CS 543):
2D Clipping

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

OpenGL Stages

e After projection, several stages before objects drawn to screen
e These stages are non-programmable

Vertex shader: programmable In hardware: NOT programmable

: Primitive
Transform —> Projection > Assembly [Clipping

Hidden
! Surface <— Rasterization

I Removal

Hardware Stage: Primitive Assembly

e Up until now: Transformations and projections applied
to vertices individually

e Primitive assembly: After transforms, projections,
individual vertices grouped back into primitives

e E.g.v6,v7 and v8 grouped back into triangle
v3 v4

Hardware Stage: Clipping

e After primitive assembly, subsequent operations are
per-primitive

e Clipping: Remove primitives (lines, polygons, text,
curves) outside view frustum (canonical view volume)

_— pd D N
A D

Clipping lines Clipping polygons

Rasterization

e Determine which pixels that primitives map to
e Fragment generation
e Rasterization or scan conversion

ooo
oo
o
Fragment Processing
e Some tasks deferred until fragment processing
Hidden Surface Removal Antialiasing
G 1] |
; eometric - I Fragment | | Frame
Modeling ——m= T — Rasterization —Dlr Biee g -—:—> Bisfisr
| S e - = 4
Transformation Hidden surface Removal

Projection Antialiasing

Clipping

e 2D and 3D clipping algorithms
e 2D against clipping window
e 3D against clipping volume

e 2D clipping

Lines (e.g. dino.dat)

Polygons
Curves
Text

P o

)

ABC

N
/)
=

)

AB

Clipping 2D Line Segments

e Brute force approach: compute intersections
with all sides of clipping window

e Inefficient: one division per intersection

G/A//B E/ /

2D Clipping

e Better Idea: eliminate as many cases as possible
without computing intersections

e Cohen-Sutherland Clipping algorithm

Y = Yinax

Y = Ymin

Clipping Points

(xmax, ymax)

(xmin, ymin)

Determine whether a point (x,y) is
inside or outside of the world
window?

If (xmin <= x <= xmax)
AND (ymin <=y <= ymax)

then the point (x,y) is inside
else the point is outside

Clipping Lines

/ (xmax, ymax)

/

1

3

(xmin, ymin) /

3 cases:
Case 1: All of line in
Case 2: All of line out
Case 3: Part in, part out

Clipping Lines: Trivial Accept

(Xmax, Ymax)

(Xmin, Ymin)

Case 1: All of line in
Test line endpoints:

Xmin <= P1.x, P2.x <= Xmax AND
Ymin <= P1.y, P2.y <= Ymax

Note: simply comparing x,y values of
endpoints to x,y values of rectangle

Result: trivially accept.
Draw line in completely

Clipping Lines: Trivial Reject

Case 2: All of line out
Test line endpoints:

" pl.x, p2.x <= Xmin OR
=" pl.x, p2.x >= Xmax OR
" pl.y, p2.y <=Ymin OR
=" pl.y, p2.y >= Ymax

Note: simply comparing x,y values of
endpoints to x,y values of
rectangle

Result: trivially reject.
Don’ t draw line in

Clipping Lines: Non-Trivial Cases

/ p2 Case 3: Part in, part out

Two variations:
/ e One point in, other out
/ dely Both points out, but part of line cuts
v through viewport

pl delx

Need to find inside segments

Use similar triangles to figure out length
of inside segments

d e
dely delx

Clipping Lines: Calculation example

/
Y

d e

dely " delx

<

dely

If chopping window has

(left, right, bottom, top) = (30, 220, 50, 240),
what happens when the following lines are
chopped?

(a) p1 = (40, 140), p2 = (100, 200)

(b) p1 = (20, 10), p2 = (20, 200)

(c) p1 = (100, 180), p2 = (200, 250)

Cohen-Sutherland Pseudocode

int clipSegment(Point2& pl, Point2& p2, RealRect W) ({
do {
if(trivial accept) return 1; // whole line survives
if(trivial reject) return 0; // no portion survives
// Otherwise chop

if(pl is outside)

// £find surviving segment

{
if(pl is to the left) chop against left edge
else if(pl is to the right) chop against right edge
else if(pl is below) chop against the bottom edge
else if(pl is above) chop against the top edge

Cohen-Sutherland Pseudocode

else // p2 is outside

// find surviving segment

{
if(p2 is to the left) chop against left edge
else if(p2 is to right) chop against right edge
else if(p2 is below) chop against the bottom edge
else if(p2 is above) chop against the top edge

}
} while(1);

Using Outcodes to Speed oo
Up Comparisons

e Encode each endpoint into outcode (what quadrant)

byb,b,b;
1001 | 1000 | 1010
Y= Ymax
b,=11fy>y_.., 0otherwise 0001 | 0000 | 0010
b, =11ty <y, 0 otherwise y=y. .
b,=1ifx>x__, 0 otherwise 0101 | 0100 | 0110
b; =11fx <x.,, 0 otherwise X=X X=X_

e Outcodes divide space into 9 regions
e Trivial accept/reject becomes bit-wise comparison

References

e Angel and Shreiner, Interactive Computer Graphics,
6t edition

e Hill and Kelley, Computer Graphics using OpenGL, 3"
edition

