
Chapter 3

Image Compression
and Graphic File
Formats

In this chapter, you’ll learn about:

� Common image compression schemes

� Essential graphic file formats

� Important graphic file formats

� File format suitability for arcade game graphics

� Caveats for working with graphic files

� Specific graphic file format recommendations

55



Image Compression

Graphic images can consume a lot of disk space, particularly when they’re saved

at high screen resolutions and/or color depths. To see what I mean, let’s calculate

the file size required by images saved at common screen resolutions and color

depths by applying this simple formula:

H x V x C

File Size (KB) = --------------

8 x 1024

H represents the number of horizontal pixels

V represents the number of vertical pixels

C represents the color depth

TABLE 3-1: Examples of Different Graphic Image File Sizes

Screen Resolution Color Depth File Size (in KB)

320x200 4 bits/pixel 32

320x200 8 bits/pixel 64

320x240 8 bits/pixel 75

640x480 4 bits/pixel 150

640x480 8 bits/pixel 300

640x480 16 bits/pixel 600

640x480 24 bits/pixel 900

800x600 8 bits/pixel 468.75

800x600 16 bits/pixel 937.5

800x600 24 bits/pixel 1406.25

As you can see from Table 3-1, graphics files, particularly those at higher screen

resolutions and color depths, can grow to be quite large. When designing arcade

game graphics, you can easily wind up with dozens, if not hundreds, of such files.

Even with today’s multi-gigabyte hard drives, storing them can consume a fair

amount of disk space. What’s more, large graphics files tend to be more difficult to

work with than smaller ones as they take longer to load, save, and manipulate than

their smaller counterparts. Need to put a bunch on a floppy? Forget about it. Want

to e-mail one to a friend in New Zealand? Don’t even bother unless you both have

access to ISDN, DSL, or cable modems.

To make more efficient use of available disk space, most graphics files are com-

pressed. Compression makes use of complex mathematical equations to

dramatically reduce the sizes of images. There are several methods of image com-

pression available, however, they all tend to fall into two broad categories: lossless

compression and lossy compression.

56 Chapter 3 / Image Compression and Graphic File Formats



Lossless Compression

Lossless compression technologies involve no data loss. The original information

of each file is stored intact and can be completely recovered from its compressed

state at the time it is decompressed or extracted. Lossless compression is usually

implemented using one of two different methods: statistical or dictionary-based.

The statistical method uses a three-step process to do its dirty work. First it reads

in a single byte of data. Next, it calculates the probability of that byte’s appearance

in the data. Finally, it encodes the byte by replacing it with a symbolic token that

acts as a kind of shorthand version of the data. When the data is later decoded, the

symbol is replaced with the original byte. The statistical method can achieve very

high compression levels if the data contains many repeating values.

The dictionary-based method uses a somewhat different concept. It reads in sev-

eral bytes of data and looks for groups of symbols that appear in a dictionary. If a

match is found, a pointer into the dictionary is made. The more matches found in

the image data, the higher the level of compression that can be achieved.

Lossless compression is important to us because it maintains the integrity, or the

quality, of the file’s information.

There are several lossless compression algorithms commonly used on graphic

images. These include:

� RLE compression

� Packbits compression

� LZ77 compression

� LZW compression

RLE Compression

Run-length encoding, or RLE, compression works on images by analyzing their

graphic data sequentially from left to right and top to bottom. It compares the

value of each byte of information with the value of the previous byte. Each new

data value is recorded into a “packet” of two bytes where the first byte contains

the number of times the value is repeated, and the second packet contains the

actual value. The bytes in the packet are known as the “run count” and “run

value,” respectively.

In situations where a graphic image contains many repeat values, the compression

ratio will be very high. For example, if every byte in a 1000-byte image was identi-

cal, its size could be reduced to 20 bytes, giving it a 50:1 compression ratio. An

image with lots of different values won’t compress very well, and in some cases

can actually become larger than the original. For example, if all bytes in an image

Chapter 3 / Image Compression and Graphic File Formats 57



are different from each other, the image’s size will double, because two bytes are

used to store each byte in the image.

RLE compression exists in several forms, all of which work essentially the same

way but differ somewhat in terms of efficiency. Because it works well for most

types of images, RLE is the most common lossless image compression technology

and is used by such popular graphics formats as PCX and BMP.

Packbits Compression

Packbits is considered an RLE compression scheme because it also looks for

“runs,” or repeated values, and calculates their number, or overall “length.” The

repeated bytes it finds are then “packed” together, hence the name. Compared to

RLE, images that use packbits typically offer superior compression rates. Yet

despite this, packbits compression is used by only a few file formats, namely by

LBM and TGA.

LZ77 Compression

LZ77 (Lempel, Ziv, 77) compression was developed in 1977. It works by keeping

track of the last n bytes of the data seen, and when it encounters a data sequence

that has already been analyzed, it records its position along with the length of the

sequence.

LZ77 is used as the primary compression scheme for the PNG image format. In

addition, all popular file compression schemes, such as ARJ, LHA, ZIP, and ZOO,

are based on the LZ77 algorithm.

LZW Compression

The LZW (Lempel, Ziv, Welsh) compression scheme does its work by looking for

patterns of data and assigning codes to them. It works best on images with large

areas of solid colors. Images that contain many different colors and patterns aren’t

very good candidates for this type of compression.

LZW is a “dictionary-based” compression technology. Its “dictionary” includes a

special table that contains a code for each possible value contained in an image.

For example, if the LZW compression is used on an 8-bit image, the LZW dictio-

nary will be initialized with codes for up to 256 possible values. As the image data

is read, new values are added to the table as each unique pattern of data is found.

LZW dictionaries aren’t actually saved along with the compressed data. Instead,

the dictionary is reconstructed as part of the image decompression process.

LZW is most often associated with GIF (Graphics Interchange Format) image

files. However, it is used for other types of graphics files, including TIFF (Tagged

58 Chapter 3 / Image Compression and Graphic File Formats



Image File Format), and the basic technology serves as the foundation for many of

the ZIP file compression algorithms.

Lossy Compression

Lossy compression techniques all involve some sort of information loss. Data that

is compressed using a lossy compression scheme usually can’t be restored back to

its original, uncompressed state. However, in exchange for this inaccurate recon-

struction, lossy compression is capable of achieving very high compression rates.

NOTE: When using a lossy compression scheme, repeatedly saving an image

will cause that image’s quality to degrade.

There are two lossy compression methods in general use. These are:

� Color reduction

� JPEG

Color Reduction

Color reduction is a special process that allows you to create files with fewer col-

ors than contained in the original image. For example, you can reduce a 24-bit

(with millions of colors) image down to an 8-bit (256 colors) one. The end result

will produce a new file that is substantially smaller than the original, as indicated

by Table 3-1. Whenever you reduce the number of colors in an image, there is

always some image information that is lost.

There are a couple of color reduction techniques in use. The most basic form is

called remapping. This simply means that when an image is color reduced, the

resulting image will have the best color reproduction possible. Every pixel con-

tained in it will be replaced with colors available in the new palette. Unfortunately,

the results from remapping are usually less than satisfactory.

The other color reduction process is called color dithering. Color dithering works

much like mixing two shades of paint to produce a third color. Instead of mixing

paint, however, it blends patterns of different colors to simulate the presence of

colors not in the current palette. As a result, color dithering can usually produce

better results than remapping, especially when reducing an image from 256 colors

down to 16. Most graphics programs support both methods of color reduction,

although the resulting image quality varies widely between them.

The primary advantage of color reduction is that it’s relatively fast and usually

produces good results on most types of images. Color reduction is almost always

used in conjunction with one of the lossless compression techniques to reduce

Chapter 3 / Image Compression and Graphic File Formats 59



image file size even further. Both color reduction and dithering are discussed in

more detail in Chapter 8.

JPEG

JPEG is a lossy compression technique that is used for compressing photo-realis-

tic images with millions of colors in them. For more information on JPEG and how

it works, see the JPEG entry under the Important Graphic File Formats section of

this chapter.

Figure 3-1 compares the two compression schemes. Notice the artifacting exhib-

ited by lossy compression compared to lossless compression.

60 Chapter 3 / Image Compression and Graphic File Formats

Lossless Compression

Lossy Compression

FIGURE 3-1: Lossless vs. Lossy Compression Comparison



Essential Graphic File Formats

Computers use file formats to negotiate the exchange of information between dif-

ferent applications and systems. Graphics are no different in this regard. Once you

spend time designing game artwork, you’ll want to save what you create for future

editing or display. Many graphics editors offer several choices of file formats to

save your pictures in. However, only a few are actually useful to arcade game

graphics designers. I’ve taken the liberty of identifying and describing them here.

BMP (Bitmap)

Native Platform(s): Windows 3.1, 95, 98, NT 4.0, and 2000

File Extension(s): .BMP, .bmp

BMP is the standard graphics format used by the various incarnations of

Microsoft’s Windows operating systems (i.e., Windows 3.1, 95, 98, and NT). The

BMP format comes in two flavors, RGB and RLE.

The BMP RGB format, as its name implies, saves images as RGB data (red,

green, blue) which is a representation of what’s actually generated on the com-

puter’s display. This allows you to accurately save and exchange images with

thousands or millions of colors in them. The RGB format doesn’t support image

compression.

The BMP RLE format stores image data using one of the RLE compression

schemes. Unlike the BMP RGB format, this allows you to take advantage of com-

pression and substantially reduce the overall size of your graphic images. Besides

compression, the main difference between the BMP RGB and BMP RLE formats

is that the BMP RLE format is limited to saving images with a maximum of 256

colors.

The Windows BMP format is definitely one of the best choices when it comes to

saving your game graphics, especially on the Windows platform. This is simply

due to the fact that virtually every Windows graphics package can read and write

BMP files. In addition, the BMP format enjoys a good level of cross-platform com-

patibility, as Apple QuickTime (versions 2.0 and better) and most major Macintosh

graphics packages have the ability to read and write both BMP format variations.

NOTE: Although BMP is the standard Windows graphics file format, some Win-

dows graphics programs still don’t support RLE flavored BMP files. To avoid

any unpleasant compatibility problems down the road, make sure all of the

graphics software you use works with BMP RLE files. Otherwise, just to be

safe, always save your files in the BMP RGB format.

Chapter 3 / Image Compression and Graphic File Formats 61



TABLE 3-2: BMP Characteristics

BMP Variant Screen
Resolutions

Compression Lossy Color Depths
Supported

Platform
Compatibility

RGB Any No No 1, 4, 8, or
24 bits

Windows,
Macintosh*

RLE Any Yes, RLE No 1, 4, 8, or
24 bits

Windows,
Macintosh*

* Compatible with QuickTime and most popular graphics packages.

NOTE: Windows also supports two related image formats called DIB, or

device-independent bitmap, and RLE, or run-length encoding (simply an RLE

compressed DIB file with an .RLE file extension). While a number of graphics

packages can read and write these formats, there are still plenty of graphics

programs that won’t. Therefore, I generally don’t recommend using these

formats unless you know your graphics software can actually support them.

GIF (Graphics Interchange Format)

Native Platform(s): N/A

File Extension(s): .GIF, .gif

The GIF format was developed by the CompuServe Information Service during

the mid-1980s as a means to pass graphic files between different computers. Until

GIF was developed, graphic formats were usually limited to being used on the

same types of machines. Since that time, the format has evolved and has estab-

lished itself as a universal graphics standard.

There are two versions of the GIF format in use: 87a and 89a. GIF 87a was the

original implementation of the format. Although still used, it has been largely

replaced by the later 89a format. Technically speaking, there is little difference

between the two, although the 89a format does offer some additional features.

These include interlacing, the ability to store multiple images within a single

image, and transparency. Interlacing enables images to appear in stages while they

load. Multiple frames can be used to produce simple, frame-based animation

effects. These images are frequently referred to as animated GIFs. Transparency

allows the background of an image to show through, making it seem as if an image

is free-floating. Neither version of the format can be used to store images with

more than 256 colors.

Animated GIF files are particularly interesting to the arcade game artist. They are

essentially compiled sequences of images and are frequently used in online games

as game sprites. In fact, I used them to create all of my game animations for my

work at ZapSpot. However, be careful when using them in your own game projects

62 Chapter 3 / Image Compression and Graphic File Formats



because once you create an animated GIF image, it’s very difficult to extract the

individual frames of such animations for additional editing and manipulation.

Therefore, animated GIFs can best be thought of as a non-reusable image format.

NOTE: While both versions of the format are widely used, some older graphics

programs don’t know how to deal with GIF 89a files. Therefore, if you opt to

store your images in the GIF format, always try to save your images as GIF

87a to ensure maximum compatibility with different applications and

platforms.

By definition, files stored in the GIF format are always compressed. Yet, unlike

most of the other formats described here, they utilize the LZW compression

scheme. This puts them at a slight advantage over other formats as images com-

pressed using LZW generally offer better compression ratios, especially when

used on images that contain large areas of similar colors.

The GIF format has seen widespread use on the Internet and World Wide Web

where it has become the graphics format of choice. Yet, surprisingly, it hasn’t seen

much use in game development, despite being perfectly suited for the role. Due to

its near universal popularity, virtually all graphics packages support the GIF for-

mat. In fact, it’s probably one of the safest and reliable methods for exchanging

graphics between different computers and operating systems.

One potential problem with using GIF files to store your game graphics is how

some graphics programs will optimize the color palette. While this has no adverse

effect on how the image actually appears on-screen, it can cause problems when

you try to edit the file later as the image colors won’t be arranged in exactly the

same order as when you first created the file. What’s more, due to the optimiza-

tion, many of the colors of the image’s original color palette will actually be

removed. This situation is particularly true of graphics packages that emphasize

GIF use for the World Wide Web. Make sure your software doesn’t do this by test-

ing it with non-critical files before you start using the GIF format to store your

important artwork. To be safe, consider saving your images as GIF only once they

are finalized or simply use a different file format to store your images altogether.

NOTE: Since 1994, there have been major legal issues involved with the LZW

compression scheme used by the GIF format. The Unisys Corporation owns

the patents to the technology and now requires any vendor which develops

software that uses the GIF format to acquire an expensive license. This situa-

tion may serve to reduce the popularity of GIF in future generations of

graphics software.

Chapter 3 / Image Compression and Graphic File Formats 63



NOTE: As the GIF format is one of the most universal of all graphic formats,

it’s also a natural choice for storing graphics for cross-platform, Java-based

arcade games.

TABLE 3-3: GIF Characteristics

GIF Variant Screen
Resolutions

Compression Lossy Color Depths
Supported

Platform
Compatibility

GIF 87a Any Yes No 1, 2, 3, 4, 5,
6, 7, or 8 bits

DOS, Macintosh,
Windows, Linux,
Java

GIF 89a Any Yes No 1, 2, 3, 4, 5,
6, 7, or 8 bits

DOS, Macintosh,
Windows, Linux,
Java

IFF (Interchange File Format)

Native Platform(s): Commodore Amiga, Atari ST, DOS

File Extension(s): .IFF, .iff, .LBM, .lbm

The IFF format originated on the Commodore Amiga around 1985. It was devel-

oped by Electronic Arts for use with their powerful Deluxe Paint graphics package.

The format’s versatility quickly made it a standard on that platform. Later, the IFF

format made its debut on both DOS (c. 1988) and the Atari ST (c. 1990) when ver-

sions of the Deluxe Paint program were released for these systems.

There are two versions of the IFF format still in everyday use: IFF and LBM. The

basic IFF format is compatible with several different systems including the Amiga,

Atari ST, and the PC. The LBM format, on the other hand, is native to PC and its

version of the Deluxe Paint program. LBM is actually a subset of the IFF format

called PBM. However, any graphics program compatible with IFF files can usually

handle LBM files and vice versa.

Both IFF formats support compressed and uncompressed images. When dealing

with compressed images, IFF usually employs RLE compression, while LBM files

usually use packbits compression.

It’s been my experience that some programs have problems reading LBM files

created with the PC version of Deluxe Paint and vice versa. This is probably due to

the fact that Electronic Arts never officially documented how the LBM packbits

compression was actually implemented in their software. Therefore, there’s a

wide degree of variation in how different programs interpret and write these files.

Because of this, my advice is to not use LBM for your images. Rather, use the

PCX format instead. Given this issue, it’s surprising to find that Deluxe Paint has

no problems with the IFF files generated by other programs.

64 Chapter 3 / Image Compression and Graphic File Formats



TABLE 3-4: IFF Characteristics

IFF Variant Screen
Resolutions

Compression Lossy Color Depths
Supported

Platform
Compatibility

IFF Any Yes, RLE No 1, 4, 5, 6, 8,
or 24 bits

Atari ST, Amiga,
DOS, Windows*,
Macintosh*

LBM Any Yes, packbits No 1, 4, or 8 bits DOS

* Denotes limited compatibility, usually obtained through graphic conversion software.

PCX

Native Platform(s): DOS

File Extension(s): .PCX, .pcx

The PCX format has been around for a long time. ZSoft developed it in the

mid-1980s for its popular PC Paintbrush. Because of its longevity, PCX is almost

as ubiquitous as the GIF format and is even more widely supported. Even so, PCX

is most at home on DOS systems where over the years it has established itself as

the de facto graphics standard for that platform.

The PCX format is quite flexible and can store images with color depths of 1, 2, 4,

8, and even 24 bits. PCX files also use an RLE compression scheme, which makes

PCX the recommended file format for any DOS related game and graphics devel-

opment. However, because BMP is the Windows standard graphics format, I

suggest that you use BMP instead of PCX when working with Windows applica-

tions if you have a choice. At this time, PCX enjoys only limited support on the

Macintosh platform. Although most of the major Macintosh graphics packages can

read and write the format, QuickTime doesn’t currently support it, thus limiting

its overall compatibility on that platform.

NOTE: Several versions of the PCX graphics format (i.e., version 1, 3, and 5)

actually exist. However, versions below 5 are seriously outdated and do not

support color depths greater than 4 bits. Therefore, I have opted not to dis-

cuss them here.

Even with the PCX format’s widespread popularity, it’s far from perfect. While the

format is well documented, it isn’t always well implemented. I’ve observed vari-

ous discrepancies with how different programs interpret and display PCX files.

Despite this issue, PCX is a good alternative to BMP, especially when working

with programs or development environments that don’t support the BMP format.

Chapter 3 / Image Compression and Graphic File Formats 65



PCX can actually be considered an unofficial Windows graphics format because it’s

supported by the MS Paint application bundled with every version of Windows

since version 3.1. Incidentally, MS Paint is actually a stripped-down version of the

PC Paintbrush program.

TABLE 3-5: PCX Characteristics

PCX Variant Screen
Resolutions

Compression Lossy Color Depths
Supported

Platform
Compatibility

Version 5 Any Yes, RLE No 1, 2, 4, 8, or
24 bits

DOS, Windows,
Macintosh*

* Denotes limited compatibility, usually obtained through graphic conversion software.

PICT (Picture)

Native Platform(s): Apple Macintosh

File Extension(s): .PICT, .pict, .PCT, .pct

Apple developed the PICT file format way back in 1984, when it introduced the

original Macintosh computer. PICT is the standard graphics format used by

Macintosh computers. Because the format is internal to the Macintosh’s operating

system, it can be assumed that all Macintosh graphics programs can read and/or

write legally generated PICT files without any problems.

There have been two major versions of the PICT format introduced, PICT 1 and

PICT 2. PICT 1 was the original version of the format. It supported images that

contained up to eight colors and has long been considered obsolete. PICT 2 was

introduced several years after PICT 1. It’s the current version of the format and is

capable of supporting images that contain as many as 16,777,216 colors. A few

minor variations of the format exist, however, these are largely proprietary to cer-

tain applications and are rarely used otherwise.

The PICT format is interesting in that it’s capable of storing both vector and

bitmap data within the same file. However, the vast majority of the images saved

in the PICT format are actually just straight bitmaps. As with most of the formats

described here, PICT utilizes a form of RLE compression in order to keep images

reasonably small and compact when stored on disk.

NOTE: If a Macintosh user has QuickTime 2.0 or better installed on his or her

machine, it’s possible to save PICT files using whatever compression library

QuickTime supports, including JPEG.

66 Chapter 3 / Image Compression and Graphic File Formats



NOTE: PICT files are viewable through the Windows desktop if there’s a ver-

sion of QuickTime 2.5 or better installed.

TABLE 3-6: PICT Characteristics

PICT Variant Screen
Resolutions

Compression Lossy Color Depths
Supported

Platform
Compatibility

PICT 2 Any Yes, RLE or
QuickTime

No 1, 4, 8, 24,
or 32 bits+

Macintosh,
Windows*

* Denotes limited compatibility, usually obtained through graphic conversion software. The Windows
version of QuickTime allows them to be viewable, however.

+ A color depth of 32 bits is actually 24 bits with an 8-bit alpha channel used to store transparency
information.

Important Graphic File Formats

The graphic file formats mentioned in this part of the chapter impose some sort of

limitation on your artwork, either in terms of overall system/application compati-

bility or image quality. This does not mean they are useless, however. They all

have some use or potential use in game graphics development and it’s more than

likely that you’ll come across one or more of them in your projects.

FLIC

Native Platform(s): DOS

File Extension(s): .FLI, .fli, .FLC, .flc

Programmer Jim Kent (author of Autodesk Animator for DOS and Aegis Animator

for the Atari ST) developed the original FLIC file format in 1993 as an attempt to

create a standard animation playback format. Since that time, the format has seen

widespread use by DOS game developers.

There are two variations of the FLIC format in use: FLI and FLIC. FLI files are

the older of the two and are limited to animations with a 320x200 resolution. The

later and more common FLIC format supports several additional features and

extensions. Animations in both versions are limited to a maximum of 4,000

frames.

All FLIC files are capable of displaying up to 256 colors per frame of animation and

can utilize a variety of compression algorithms including RLE and packbits.

The FLIC format was a widely used predecessor of the Windows AVI movie for-

mat and is still commonly used in game development circles. However, as an

animation format, FLIC files are best suited for large animations such as those

Chapter 3 / Image Compression and Graphic File Formats 67



featured in game title sequences or cut scenes. For smaller animations, other for-

mats such as animated GIFs are a better choice.

NOTE: FLI files limit their color values to VGA 0-63 levels or a maximum of 64

shades per color. The FLIC format was later modified to accommodate

SVGA 0-255 color values or a maximum of 256 shades per color. Please

refer to Chapter 9 for more information on the specific implications of these

differences.

TABLE 3-7: FLI/FLIC Characteristics

FLIC Variant Screen
Resolutions

Compression Lossy Color Depths
Supported

Platform
Compatibility

FLI Limited to a
maximum of
320x200

Yes, RLE No 8 bit (color) DOS, Windows*

FLIC 320x200,
640x480,
800x600

Yes, RLE,
packbits

No 8 bit (color) or
16+ or 24 bit+

DOS, Windows*

* Denotes limited compatibility, usually obtained through graphic conversion software.
+ Not part of the official file format but supported by extended variations of the format.

JPEG (Joint Photographic Experts Group)

Native Platform(s): N/A

File Extension(s): .JPG, .jpg

JPEG is an image compression mechanism and not a file format in itself. There are

actually several classes of JPEG compression but the most popular is known as

JFIF. However, in everyday use, the terms JPEG and JFIF are synonymous.

JPEG uses a lossy compression scheme that is designed to take advantage of the

limitations of the human eye. Any image detail that is not visually perceived by

the eye is lost when stored as a JPEG. As a result, JPEG is capable of providing

images with incredible compression ratios, usually anywhere between 5:1 and

15:1. JPEG is also unique among the compression techniques mentioned here

because it allows you to trade off image quality to gain more compression. The

higher the level of compression, the lower the quality of the image and vice versa.

The most common side effect of using JPEG compression is that images often dis-

play noticeable artifacting and blurring. JPEG works best on highly detailed

images, such as photographs, as these types of images have more content to lose.

Also, any image that uses JPEG compression is automatically promoted to 24-bit

color depth, even if it was originally created at a lower color depth.

68 Chapter 3 / Image Compression and Graphic File Formats



In addition to JFIF, there are two other variations of JPEG compression, progres-

sive JFIF and lossless JFIF. Progressive JFIF (also called progressive JPEG)

stores an image in overlapping layers. When a progressive JFIF image loads, it

displays its content in stages. Each layer appears gradually until the whole image

is rendered. This makes progressive JFIF useful for displaying large images in sit-

uations where bandwidth might be low, i.e., over the Internet or on slow

computers. Lossless JFIF stores images without using lossy compression. There-

fore, images stored this way do not suffer from the visual problems traditionally

associated with JPEG compression. Yet, at the same time, lossless JFIF images

also don’t enjoy the high image compression rates offered by standard JFIF.

Using JPEG compression for arcade game graphics is generally not a good idea.

First, it’s lousy for artwork that contains sharp details (which are commonly found

in sprites and menu screens) since the colors of different objects tend to bleed

into each other. Second, it promotes all images to 24 bit regardless of their original

color depth, making them useless for palette-based images. And, finally, images

stored as JPEGs can’t be resaved without further degrading their image quality.

This makes it nearly impossible to edit them without destroying the integrity of

the original image.

TABLE 3-8: JPEG Characteristics

JPEG Variant Screen
Resolutions

Compression Lossy Color Depths
Supported

Platform
Compatibility

JFIF Any Yes, JPEG Yes 8 bit (grayscale)
or 24 bits

DOS, Macintosh,
Windows, Linux,
Java

Progressive JFIF Any Yes, JPEG Yes 8 bit (grayscale)
or 24 bits

DOS, Macintosh,
Windows, Linux,
Java

Lossless JFIF Any No No 8 bit (grayscale)
or 24 bits

DOS, Macintosh,
Windows, Linux,
Java

PNG

Native Platform(s): N/A

File Extension(s): .PNG, .png

The PNG format evolved out of the ashes of the 1994 Unisys patent dispute over

the LZW compression used in the GIF format when Thomas Boutell (along with

others) developed the PNG format specification as an alternative and eventual

replacement for the GIF format. Although until recently support for PNG has been

slow in coming, it’s now on the verge of becoming a new standard as more and

more graphics tools are being updated to support it.

Chapter 3 / Image Compression and Graphic File Formats 69



Like GIF files, PNG files support interlacing and transparency information (up to

254 levels). However, the PNG format also introduces several improvements over

GIF and the other file formats mentioned here. These include built-in gamma cor-

rection, support for 8-bit color, 8-bit grayscale, true color images, and built-in file

integrity checking. PNG’s internal gamma correction ensures that graphic images

saved as PNG files will retain a consistent gamma level regardless of the platform

on which they’re displayed. Its ability to store both 8-bit and 24-bit images makes

it extremely useful for game-oriented graphics. Finally, its built-in file integrity

checking will help minimize problems with file corruption and the like.

The PNG format uses the LZ77 compression algorithm that gives it better com-

pression ratios than many of the other file formats discussed here.

TABLE 3-9: PNG Characteristics

PNG Variant Screen
Resolutions

Compression Lossy Color Depths
Supported

Platform
Compatibility

PNG Any Yes, ZIP No 8-bit color, 8-bit
grayscale, or
24 bits

DOS, Macintosh,
Windows, Linux,
Java

PSD (Photoshop)

Native Platform(s): Macintosh, Windows 3.1, 95, 98, NT 4.0, and 2000

File Extension(s): .PSD, .psd

The PSD format is the native file format used by Adobe’s Photoshop program. It

can store images with up to 24-bit color, and the current version supports features

such as layers and transparency. PSD files can be either uncompressed or com-

pressed using RLE compression.

Although Photoshop enjoys an extremely large following among Web, multimedia,

and game developers worldwide, it’s also an expensive program. This fact means

that few low-end graphics packages are currently compatible with the PSD format.

Therefore, unless you have specific need to use it, it is recommended that you

avoid saving your images in PSD format.

70 Chapter 3 / Image Compression and Graphic File Formats



TABLE 3-10: PSD Characteristics

PSD Variant Screen
Resolutions

Compression Lossy Color Depths
Supported

Platform
Compatibility

PSD 5.0 Any Yes, RLE No 8 or 24 bits Macintosh,
Windows

PSD 3.0 Any Yes, RLE No 8 or 24 bits Macintosh,
Windows, Linux+

PSD 2.0/2.5 Any Yes, RLE No 8 or 24 bits Macintosh*,
Windows*

* Denotes limited compatibility, usually obtained through graphic conversion software.
+ Linux systems can read PSD files when using the free GIMP image editor software that is

frequently bundled with many Linux installations.

NOTE: Most of the applications outside of Photoshop that support the PSD file

format are only compatible with the older, PSD 2.0/2.5 variations. PSD ver-

sions below 2.5 don’t support layers or transparency information. Also, PSD

5.0 files store text as editable layers. This information might be lost when

loading such files into older versions of Photoshop or other applications.

Keep these issues in mind when exchanging files with applications that claim

PSD compatibility.

PSP (Paint Shop Pro)

Native Platform(s): Windows 3.1, 95, 98, NT 4.0, and 2000

File Extension(s): .PSP, .psp

PSP is the native file format of Jasc’s popular Paint Shop Pro program. As with

most of the file formats described here, the PSP format can store graphics images

at a variety of color depths, including 24-bit color.

The PSP format can also store images in either compressed or uncompressed

form. Compressed PSP images use either RLE or LZ77 (a variation of LZW) com-

pression schemes. Version 5 of the PSP format introduced the ability to store

Photoshop-like layer and transparency information with images as well.

Although Paint Shop Pro enjoys a sizeable following among many Windows users,

few other graphics programs are actually compatible with the PSP format. There-

fore, it’s not recommended that you save your images as PSP files unless you

intend to work exclusively with that program.

Chapter 3 / Image Compression and Graphic File Formats 71



TABLE 3-11: PSP Characteristics

PSP Variant Screen
Resolutions

Compression Lossy Color Depths
Supported

Platform
Compatibility

PSP 3.0/4.0 Any Yes, RLE or LZ77 No 8 or 24 bits Windows*

PSP 5.0/6.0 Any Yes, RLE or LZ77 No 8 or 24 bits Windows*

* Denotes limited compatibility, usually obtained through graphic conversion software.

NOTE: Older versions of Paintshop Pro aren’t fully compatible with the newer

versions of the PSP format.

TGA (Targa)

Native Platform(s): N/A

File Extension(s): .TGA, .tga

Truevision, Inc. (now Pinnacle) originally developed the Targa format in 1985 to

use with its line of professional video capture products. However, since that time,

the TGA format has seen many refinements and considerable use as an output for-

mat for many high-end painting and 3D programs.

TGA files can contain 8, 16, 24, or 32 bits of color information per pixel and can

store images using a number of compression schemes including RLE and LZW.

Although a technically solid graphics format, TGA’s lack of support among many

lower-end graphics applications makes it difficult to recommend for your graphics

projects.

TABLE 3-12: TGA Characteristics

TGA Variant Screen
Resolutions

Compression Lossy Color Depths
Supported

Platform
Compatibility

N/A Any No No 8, 16, 24, or
32 bits

DOS, Macintosh*,
Windows*

N/A Any Yes, RLE, packbits,
and LZW

No 8, 16, 24, or
32 bits

DOS, Macintosh*,
Windows*

* Denotes limited compatibility, usually obtained through graphic conversion software.

TIFF (Tagged Image File Format)

The Tagged Image File Format, or TIFF as it is commonly known, was designed

with the intention of becoming the standard graphics file format. As such, it was

engineered from the start to handle virtually any contingency that one might

encounter. This provides TIFF files with the flexibility to support monochrome

72 Chapter 3 / Image Compression and Graphic File Formats



and color images as well as several methods of compression including packbits

and LZW.

Despite the good intentions of TIFF’s designers, the format’s flexibility has actu-

ally encouraged application developers to develop variations of the format that

don’t entirely stick to the published format specification. As a result, no single

application can now claim universal TIFF compatibility and there will always be

some version of the format that will cause problems with different graphics

software.

Although TIFF is capable of storing almost any kind of graphic image, it’s most

commonly associated with multi-megabyte high-resolution scanned images.

TABLE 3-13: TIFF Characteristics

TIFF Variant Screen
Resolutions

Compression Lossy Color Depths
Supported

Platform
Compatibility

TIFF Any Yes, LZW,
packbits

No 2, 4, 8, 16,
or 24 bits

DOS, Macintosh,
Windows, Linux,
Java

XPM (X PixMap)

Native Platform(s): UNIX, Linux

File Extension(s): .XPM, .xpm

XPM is the de facto graphics standard for the X Window system running on UNIX

and Linux computers. They are generated by a variety of applications including

Xpaint and GIMP. XPM files can contain monochrome and color images. They are

most frequently used to store icon data for X Window systems.

Unlike the other formats described in this chapter, XPM files do not use compres-

sion. Instead, images are saved as ASCII, C language source files. While this

makes them versatile and easy to transmit through e-mail, images stored in the

XPM format tend to be extremely large when compared to other graphic file

formats.

Unfortunately, very few graphics packages outside the UNIX and Linux platforms

can correctly handle XPM format files. This makes them difficult to exchange

between other platforms.

TABLE 3-14: XPM Characteristics

XPM Variant Screen
Resolutions

Compression Lossy Color Depths
Supported

Platform
Compatibility

XPM Any No No 2, 4, 8, 16,
or 24 bits

Linux, UNIX

Chapter 3 / Image Compression and Graphic File Formats 73



File Format Suitability for Arcade Game Graphics

Table 3-15 summarizes the overall suitability of each of the graphic file formats

discussed here for storing various types of game related objects.

TABLE 3-15: File Format Suitability for Arcade Game Artwork

File Format Title Screens Menu Screens Sprites Backgrounds

BMP � � � �

GIF � � � �

IFF/LBM � � � �

JPEG � � � �

PCX � � � �

PICT � � � �

PNG � � � �

PSD � � � �

PSP � � � �

TGA � � � �

TIFF � � � �

XPM � � � �

NOTE: Neither the PSD nor PSP can be directly used in game graphics. They

typically need to be “flattened” or optimized to discard extra information

such as layers and transparency data.

NOTE: I left any mention of the FLI/FLIC format out of this table because it’s

primarily an animation format and not a general-purpose graphics file for-

mat. As such, it really isn’t up to storing the static images required for game

development. However, it is a useful animation playback format.

Figures 3-2 through 3-4 provide examples of the different types of arcade game

artwork covered in Table 3-15.

Table 3-16 summarizes the overall suitability of the different graphic file formats

described throughout this chapter.

74 Chapter 3 / Image Compression and Graphic File Formats



Chapter 3 / Image Compression and Graphic File Formats 75

FIGURE 3-2:
Title/Menu
Screen Example

FIGURE 3-3:
Background
Screen Example

FIGURE 3-4:
Sprite Screen
Example



TABLE 3-16: File Format Suitability Comments

File Format Comments

BMP � The standard graphics file format for all versions of Windows.

� A good choice for exchanging graphics files between Windows and the
Macintosh (provided that a version of QuickTime is installed on the Macintosh).

� Not recommended for use with DOS, as very few DOS applications can read or
write this format.

FLI/FLIC � The best overall animation file format to use with DOS systems.

� Can be used with Windows as long as you’re sure your software is compatible
with it. Fortunately, a fair number of Windows graphics packages are.

� Definitely not recommended for the Macintosh due to extremely limited
compatibility with software on that platform.

GIF � The safest overall graphics format for reliably exchanging files between DOS,
Windows, Macintosh, and Java.

� The best overall graphics format for storing game objects for Java-based
games.

IFF/LBM � The best format to exchange graphics files between the Amiga, Atari ST, and
DOS systems should you need to.

� Generally not recommended for use on Windows unless you commonly work
with programs that you know support it.

� Has very limited support on the Macintosh and is not recommended for use on
that platform.

JPEG � Offers extremely high image compression rates; however, there’s a trade-off
between image quality and the level of compression.

� Offers excellent compression for photographic images but generally not for
game-oriented artwork.

� Potentially useful for game title screens if they contain photo-realistic details.

PCX � The best overall graphics format to use with DOS systems. Widely considered
the de facto DOS graphics standard.

� Not recommended for use with Windows unless you commonly work with
programs that you know support it. However, it’s the best format to use if you
commonly find yourself exchanging files between the Windows and DOS
platforms.

� Has relatively limited support on the Macintosh and is not recommended for
use on that platform except to exchange files with DOS systems.

PICT � The standard graphics format on the Macintosh platform. As such, compatibility
is assumed to be universal between Macintosh graphics applications.

� Not recommended for use with DOS, as very few DOS graphics programs are
compatible with it.

� Has very limited use on Windows systems except to exchange graphics files with
Macintosh systems.

76 Chapter 3 / Image Compression and Graphic File Formats



File Format Comments

PNG � Not currently recommended for use in DOS, Windows, or Macintosh game
development due to limited support among graphics tools and development
tools at this time. However, this situation is expected to change in the very near
future.

� Potentially a very good file format for Java-based games.

PSD � Offers good compatibility between higher-end Macintosh and Windows
graphics applications.

� Not recommend for DOS systems due to extremely limited support on that
platform.

PSP � Not recommended for exchanging files on DOS or Macintosh systems due to
nonexistent application support on these platforms.

� Offers only limited support among Windows graphics applications. Watch out!

TGA � Not recommended for use with DOS, Windows, or the Macintosh unless you
commonly work with programs that you know will support it. Usually, only
expensive, high-end video and 3D animation programs do.

TIFF � Although compatible with all major platforms, due to all of the format
variations that exist, it is not a very reliable format for exchanging files between
different systems.

XPM � Only recommended for Linux and UNIX systems. Do not use it to exchange files
with other platforms due to spotty compatibility with applications on other
platforms.

� Offers no compression so XPM files are excessively large, making it less than
ideal for game-oriented artwork.

File Format Compression Savings

Tables 3-17 and 3-18 show how the various formats described here compare with

each other when compressing different types of images. For testing purposes, I

compressed two sample images that represent the two extremes: a photo-realistic

title screen/menu screen and a typical arcade game sprite screen with large areas

of flat color. Both images were originally saved as 640x480 Windows RGB BMP

files and had file sizes of 900 KB each. I then calculated the results and indicated

the file compression savings as both KB and percentages.

TABLE 3-17: File Format Compression Savings—Title Screen/Menu Screen

File Format
(compression)

Final Image
Characteristics

Original File
Size

Compressed
File Size

Total Savings

BMP (RLE) 640x480, 8 bits/pixel 900 KB 348 KB 552 KB (61%)

GIF (LZW) 640x480, 8 bits/pixel 900 KB 168 KB 732 KB (81%)

IFF/LBM (RLE) 640x480, 8 bits/pixel 900 KB 216 KB 684 KB (76%)

Chapter 3 / Image Compression and Graphic File Formats 77



File Format
(compression)

Final Image
Characteristics

Original File
Size

Compressed
File Size

Total Savings

JPEG (JFIF at
66% quality)

640x480, 24 bits/pixel 900 KB 116 KB 784 KB (87%)

PCX (RLE) 640x480, 8 bits/pixel 900 KB 284 KB 616 KB (68%)

PICT (RLE) 640x480, 8 bits/pixel 900 KB 312 KB 588 KB (65%)

PNG (LZ77) 640x480, 8 bits/pixel 900 KB 160 KB 740 KB (82%)

PSD (RLE) 640x480, 8 bits/pixel 900 KB 308 KB 592 KB (65%)

PSP (LZW) 640x480, 8 bits/pixel 900 KB 168 KB 732 KB (81%)

TGA (RLE) 640x480, 8 bits/pixel 900 KB 320 KB 580 KB (64%)

TIFF (LZW) 640x480, 8 bits/pixel 900 KB 168 KB 732 KB (81%)

XPM (ASCII) 640x480, 8 bits/pixel 900 KB 680 KB 220 KB (24%)

TABLE 3-18: Format Compression Savings—Sprite Screen

File Format
(compression)

Final Image
Characteristics

Original File
Size

Compressed
File Size

Total Savings

BMP (RLE) 640x480, 8 bits/pixel 900 KB 124 KB 776 KB (86%)

GIF (LZW) 640x480, 8 bits/pixel 900 KB 84 KB 816 KB (90%)

IFF/LBM (RLE) 640x480, 8 bits/pixel 900 KB 212 KB 688 KB (76%)

JPEG (JFIF at
66% quality)

640x480, 24 bits/pixel 900 KB 100 KB 800 KB (89%)

PCX (RLE) 640x480, 8 bits/pixel 900 KB 120 KB 780 KB (87%)

PICT (RLE) 640x480, 8 bits/pixel 900 KB 128 KB 772 KB (85%)

PNG (LZ77) 640x480, 8 bits/pixel 900 KB 76 KB 824 KB (92%)

PSD (RLE) 640x480, 8 bits/pixel 900 KB 128 KB 772 KB (85%)

PSP (LZW) 640x480, 8 bits/pixel 900 KB 84 KB 816 KB (90%)

TGA (RLE) 640x480, 8 bits/pixel 900 KB 124 KB 776 KB (86%)

TIFF (LZW) 640x480, 8 bits/pixel 900 KB 84 KB 816 KB (90%)

XPM (ASCII) 640x480, 8 bits/pixel 900 KB 356 KB 544 KB (60%)

NOTE: I didn’t make any mention of the FLI/FLIC format in Tables 3-17 and

3-18 because it’s primarily an animation format and not a general-purpose

graphics file format. Mentioning it here would be like comparing apples and

oranges.

Overall, the results fell into line with my expectations but added a few surprises

as well. Not surprisingly, JPEG offered the best compression rate on the photo-

realistic title screen, averaging a staggering 87% compression saving. The

LZ77-based PNG format produced the second highest savings with 82%. The

78 Chapter 3 / Image Compression and Graphic File Formats



LZW-based file formats such as GIF, PSP, and TIFF followed close behind, aver-

aging 81%. Meanwhile, RLE-based file formats such as BMP, IFF, PICT, PCX,

PSD, and TGA all pulled up the rear, averaging only a 66.5% reduction in file size.

What was interesting was the fact that the LZW compression schemes yielded

identical savings while the RLE compression schemes seemed to vary quite a bit

in the savings they offered.

However, the results were a lot closer when it came to dealing with the flat color

sprite screen. Here, the PNG format yielded the highest compression rate at 92%.

GIF, PSP, TGA, and TIFF followed right behind, averaging 90%. And this time, the

other formats weren’t too far apart, averaging 84%. This time, JPEG produced a

file with an 89% compression saving, but the image’s quality was dramatically and

negatively affected.

NOTE: Different graphics software will produce different results. This is

because some programs offer better file compression logic than others do.

As a result, your compression savings may very well differ from my findings.

Despite these impressive numbers, don’t fall into the trap of using a particular

graphic file format just because it offers a great compression rate. A file format is

only as good as the program that can read it. Unless you have special or unusual

needs, you should always consider a file format’s compatibility with different sys-

tems and applications over its ability to compress files.

Caveats for Working with Graphic File Formats

Although we use them every day and they have proven a reliable mechanism for

exchanging data between machines, graphics files are still imperfect. Things can

sometimes go wrong. The two most common problems are:

� File corruption

� Incompatible versions

File Corruption

Compression schemes do their work by essentially scrambling and rearranging

the contents of a file. The vast majority of the time they work well and the com-

pressed file decompresses without any problems or glitches. However, every now

and then, you may come across a file that gets corrupted while being compressed

and/or saved.

File corruption can rear its ugly head for any number of reasons. For instance,

there might be a bug in how a certain program implemented a particular file-

Chapter 3 / Image Compression and Graphic File Formats 79



compression routine or a system crash might have caused the file save process to

abort before all of the pertinent information was written to disk.

Therefore, in order to minimize the likelihood of this happening in the future, I

recommend that you always save at least two versions of every important graph-

ics file you create. Also, avoid making changes to important files while in an

unstable environment. In other words, don’t continue to work on your file if your

system or graphics program is about to crash. You’re only asking for problems. In

addition, I strongly suggest that you follow the advice I give in Chapter 4 and reg-

ularly back up your files.

Incompatible Versions

A number of the file formats mentioned here can be used across different com-

puter platforms with little or no additional manipulation. However, occasionally

you will encounter a graphics file that should import correctly into a certain pro-

gram and just doesn’t. Often, the file isn’t corrupt, but rather, you’ve discovered

an unpleasant side effect of progress: incompatible file format versions.

Yes, that’s right. As software packages evolve and improve, they often introduce

new file formats and don’t always retain 100% backward compatibility with older

versions of their file formats. The problem is compounded by the fact that many

third-party software vendors are slow to update their software to reflect these

changes. As a result, it’s entirely possible for you to save your files in a particular

version of a file format that one program supports and another doesn’t!

The best and easiest way to cope with this problem is to simply pay attention

when saving or exporting your images. Often, the software you’re using will pro-

vide one or more save options. Among other things, these options will allow you

to determine the version that your file is saved as. In addition, most graphics pro-

grams will inform you when you’ve chosen an outdated or obscure version of a file

format that might cause compatibility problems with other software. Heed its

advice.

Just to drill the point home, here are some examples of common graphic file for-

mats that might cause you grief and some solutions on how to deal with them:

� BMP—Always save using the RGB subformat. This ensures universal com-

patibility with different applications, as RLE compression isn’t supported by

all BMP-compatible software.

� GIF—Choose 87a as it is supported by all GIF-compatible software, especially

when using older software.

� IFF/LBM—Always save the file as compressed (RLE or packbits). Some pro-

grams will allow you to save uncompressed IFF/LBM files but many programs

aren’t compatible with them.

80 Chapter 3 / Image Compression and Graphic File Formats



� PCX—Always choose version 5 unless you plan to use your files with

14-year-old software or want to lose most of your artwork’s color information!

� PSD—Choose version 2.0 or 2.5 if you’re not using layers.

� TIFF—Always choose uncompressed or LZW. Also, be sure to indicate the

appropriate byte order, Intel or Motorola, in order to suit the target platform for

the file. Doing both of these things can greatly reduce the compatibility issues

associated with this particular file format.

Graphic File Format Recommendations

Unfortunately, I can’t recommend one all-inclusive file format simply because

everyone has his or her own unique requirements. Therefore, in order for you to

determine the best file format(s) to use, you should look closely at such game

development related issues as:

� Graphics applications

� Development environment

� Artwork type

� Operating systems and platform

Graphics Applications

The graphics applications you use can have a major influence on which format you

ultimately select. Ask yourself these simple questions: What file formats are the

graphics programs I use compatible with? Can they read or write files in the for-

mats I need? What programs will I eventually use? Weigh your answers and

choose a file format accordingly.

NOTE: Don’t decide these issues solely on compatibility with your preferred

graphics applications. As you’ll see in Chapter 4, there’s an entire class of

image conversion software that can convert graphics files from one format

to another. In fact, to make things easier for you, I’ve included some of the

better programs of this type on the book’s accompanying CD-ROM. You

can find more information by referencing Appendix B of this book.

Development Environment

Your development environment can also have a significant influence on which for-

mat you eventually decide to go with. For example, your favorite C graphics

library might only work with PCX files while another might work with all popular

file formats. The last thing you want is a hard drive of image files that won’t work

with your favorite development tools. Therefore, you need to find out what file

Chapter 3 / Image Compression and Graphic File Formats 81



format restrictions your particular development environment places on you and

then select the appropriate format.

Generally speaking, I’ve found that:

� Multimedia authoring tools such as Macromedia’s Director and the Clickteam’s

The Games Factory tend to offer the best built-in support for graphic file

formats.

� Visual programming languages such as Delphi and Visual Basic tend to offer

support for different graphic formats via third-party controls, components, and

DLLs. However, they will typically also support at least one or more common

graphic formats internally as well.

� Character-oriented languages such as C, Assembler, and Pascal tend to offer

the poorest native support and often need one or more external graphics

libraries to provide the appropriate compatibility with the different file formats

discussed in this chapter.

Artwork Type

The type of artwork you’re designing can also play an important role in the selec-

tion process. As you saw in Tables 3-15 and 3-16, certain file formats work better

on some types of graphics files than others. You need to take this into account and

consider your available options accordingly. For example, if you’re designing game

sprites, you’ll definitely want to use a lossless compression format rather than a

lossy one so you can preserve the original integrity of your artwork. Similarly, if

you are working with photo-realistic artwork, a file format that offers good com-

pression and that better supports 24-bit images may be the way to go.

Operating System and Platform

The need to remain compatible with different computer platforms and operating

systems also impacts your decision. For example, if you’re trying to port the game

you’re working on to the Macintosh, then PICT might be a good solution. Alterna-

tively, if you need to maintain compatibility with your favorite DOS graphics

editor, BMP might not be the best choice. Ultimately, the choice is an easy one to

make as long as you think about your needs and requirements logically and then

weigh your options carefully. Refer to Table 3-19 for suggestions on which file for-

mats to use on which platforms.

82 Chapter 3 / Image Compression and Graphic File Formats



TABLE 3-19: Recommended File Format by Platform

File Format DOS Windows 3.1, 95, 98,
NT 4.0, and 2000

Macintosh Linux Java

BMP � � � � �
FLI/FLIC � � � � �
GIF 87a/89a � � � � �

IFF/LBM � � � � �
JPEG � � � � �

PCX � � � � �
PICT � � � � �
PNG � � � � �

PSD � � � � �
PSP � � � � �
TGA � � � � �
TIFF � � � � �

XPM � � � � �

Chapter 3 / Image Compression and Graphic File Formats 83


