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Outline 
 Common Practices 
 Artificial Intelligence 
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Common Practices: 
Version Control 
 Database containing files and past 

history of them 
 Central location for all code 
 Allows team to work on related files 

without overwriting each other’s work 
 History preserved to track down errors 
 Branching and merging for platform 

specific parts 

Based on Chapter 3.1, Introduction to Game Development 
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Common Practices: 
Quality (1 of 3) 
 Code reviews – walk through code by other 

programmer(s) 
 Formal or informal 
  "Two pairs of eyes are better than one." 
 Value is that the programmer is aware that 

others will read 

 Asserts 
 Force program to crash to help debugging 

 Ex: Check condition is true at top of code, say pointer 
not NULL before continuing 

 Removed during release 
Based on Chapter 3.1, Introduction to Game Development 
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Common Practices: 
Quality (2 of 3) 
 Unit tests 

  Low level test of part of game 
  See if physics computations correct 

  Tough to wait until very end and see if there's a bug 
  Often automated, computer runs through combinations 
  Verify before assembling 

 Acceptance tests 
  Verify high-level functionality working correctly 

  See if levels load correctly 

 Note, above are programming tests (i.e., code, 
technical) 
  Still turned over to testers who track bugs, do gameplay 

testing 

Based on Chapter 3.1, Introduction to Game Development 
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Common Practices: 
Quality (3 of 3) 
  Bug database 

 Document & track bugs 
 Can be from 

programmers, 
publishers, customers 

 Classify by severity and 
priority 

 Keeps bugs from falling 
through cracks 

 Helps see how game is 
progressing 

Based on Chapter 3.1, Introduction to Game Development 
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Common Practices: 
Pair (or "Peer") Programming 

 Two programmers at one workstation 
 One codes and tests, other thinks 

 Switch after fixed time 

 Results 
 Higher-quality code 

 More bugs found as they happen 
 More enjoyable, higher morale 
 Team cohesion 
 Collective ownership 

http://en.wikipedia.org/wiki/Pair_programming 
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Group Exercise 
 Consider game where hero is in a 

pyramid full of mummies.  Mummy – 
wanders around maze.  When hero gets 
close, can “sense” and moves quicker.  
When it can see hero, rushes to attack.  
If wounded, flees. 

 What “states” can you see?  What are 
the transitions? Can you suggest Game 
Maker appropriate code? 
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Outline 
 Common Practices   (done) 
 Artificial Intelligence   (next) 
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Introduction to AI 
 Opponents that are challenging, or allies 

that are helpful 
 Unit that is credited with acting on own 

 Human-level intelligence too hard 
 But under narrow circumstances can do pretty 

well 
 Ex: chess and Deep Blue 

 Artificial Intelligence 
 Around in CS for some time 

Based on Chapter 5.3, Introduction to Game Development 
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AI for CS different than AI for Games 
 Must be smart, but purposely flawed 

  Lose in a fun, challenging way 

 No unintended weaknesses 
  No "golden path" to defeat 
 Must not look dumb 

 Must perform in real time (CPU) 
 Configurable by designers 

  Not hard coded by programmer 

 "Amount" and type of AI for game can vary 
  RTS needs global strategy, FPS needs modeling of 

individual units at "footstep" level 
  RTS most demanding:  3 full-time AI programmers 
  Puzzle, street fighting: 1 part-time AI programmer 

Based on Chapter 5.3, Introduction to Game Development 
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AI for Games: 
Mini Outline 
 Introduction    (done) 
 Agents     (next) 
 Finite State Machines 
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Game Agents (1 of 3) 
 Most AI focuses around game agent 

  Think of agent as NPC, enemy, ally or neutral 

 Loops through: sense-think-act cycle 
  Acting is event specific, so talk about sense+think 

Based on Chapter 5.3, Introduction to Game Development 
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Game Agents (2 of 3) 
 Sensing 

 Gather current world state: barriers, 
opponents, objects 

 Need limitations: avoid "cheat" of looking at 
game data 

 Typically, same constraints as player (vision, 
hearing range) 
 Often done simply by distance direction (not 

computed as per actual vision) 
 Model communication (data to other agents) 

and reaction times (can build in delay) 
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Game Agents (3 of 3) 
 Thinking 

 Evaluate information and make a decision 
 As simple or elaborate as required 
 Two ways:  

 Pre-coded expert knowledge, typically hand-
crafted if-then rules + randomness to make 
unpredictable 

 Search algorithm for best (optimal) solution 

Based on Chapter 5.3, Introduction to Game Development 
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Game Agents: 
Thinking (1 of 3) 
 Expert Knowledge  

  Finite state machines, decision trees, … (FSM most 
popular, details next) 

  Appealing since simple, natural, embodies common 
sense 
 Ex: if you see enemy weaker than you, attack.  If 

you see enemy stronger, then flee! 
 Often quite adequate for many AI tasks 
  Trouble is, often does not scale 

 Complex situations have many factors 
 Add more rules 
 Becomes brittle 

Based on Chapter 5.3, Introduction to Game Development 
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Game Agents: 
Thinking (2 of 3) 
 Search 

 Look ahead and see what move to do next 
 Ex: piece on game board, pathfinding 

 Machine learning 
 Evaluate past actions, use for future 
 Techniques show promise, but typically too 

slow 
 Need to learn and remember 

Based on Chapter 5.3, Introduction to Game Development 
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Game Agents: 
Thinking (3 of 3) 
 Making agents stupid 

 Many cases, easy to make agents dominate 
 Ex: bot always gets head-shot 

 Dumb down by giving "human" conditions, longer 
reaction times, make unnecessarily vulnerable 

 Agent cheating 
  Ideally, don't have unfair advantage (such as more 

attributes or more knowledge) 
  But sometimes might, to make a challenge 

 Remember, that's the goal, AI lose in challenging way 
  Best to let player know how agent is doing 

Based on Chapter 5.3, Introduction to Game Development 
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AI for Games: 
Mini Outline 
 Introduction    (done) 
 Agents     (done) 
 Finite State Machines  (next) 
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Finite State Machines (1 of 2) 

 Abstract model of computation 
 Formally: 

  Set of states 
  A starting state 
  An input vocabulary 
  A transition function that maps inputs and the 

current state to a next state 

Wander Attack

Flee

See Enemy

Low
 H

ealth
N

o E
nem

y

No Enemy

Based on Chapter 5.3, Introduction to Game Development 
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Finite State Machines (2 of 2) 
 Most common game AI software pattern 

  Natural correspondence between states and 
behaviors 

  Easy to understand 
  Easy to diagram 
  Easy to program 
  Easy to debug 
  Completely general to any problem 

 Problems 
  Explosion of states 
 Often created with ad-hoc structure 

Based on Chapter 5.3, Introduction to Game Development 
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Finite-State Machines: 
Approaches 
 Three approaches 

 Hardcoded (switch statement) 
 Scripted 
 Hybrid Approach 

Based on Chapter 5.3, Introduction to Game Development 



R.W. Lindeman - WPI Dept. of Computer Science                                                                                                      
 Interactive Media & Game Development  	



23	



Finite-State Machine: 
Hardcoded FSM 
void RunLogic( int * state ) { 
    switch( state )  { 
        case 0:  //Wander 
            Wander(); 
            if( SeeEnemy() )    { *state = 1; } 
            break; 
         
        case 1:  //Attack 
            Attack(); 
            if( LowOnHealth() ) { *state = 2; } 
            if( NoEnemy() )     { *state = 0; } 
            break; 
 
        case 2:  //Flee 
            Flee(); 
            if( NoEnemy() )     { *state = 0; }         
            break; 
    } 
} 

Based on Chapter 5.3, Introduction to Game Development 
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Finite-State Machine:  
Problems with Switch FSM 
1. Code is ad hoc 

   Language doesn't enforce structure 

2. Transitions result from polling 
 Inefficient – event-driven sometimes better 

3. Can't determine 1st time state is entered 
4. Can't be edited or specified by game 

designers or players 

Based on Chapter 5.3, Introduction to Game Development 
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Finite-State Machine: 
Scripted with alternative language 
AgentFSM 
{ 
    State( STATE_Wander ) 
        OnUpdate 
            Execute( Wander ) 
            if( SeeEnemy )    SetState( STATE_Attack ) 
        OnEvent( AttackedByEnemy ) 
            SetState( Attack ) 
    State( STATE_Attack ) 
        OnEnter 
            Execute( PrepareWeapon ) 
        OnUpdate 
            Execute( Attack ) 
            if( LowOnHealth ) SetState( STATE_Flee ) 
            if( NoEnemy )     SetState( STATE_Wander ) 
        OnExit 
            Execute( StoreWeapon ) 
    State( STATE_Flee ) 
        OnUpdate 
            Execute( Flee ) 
            if( NoEnemy )     SetState( STATE_Wander ) 
} 

Based on Chapter 5.3, Introduction to Game Development 
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Finite-State Machine: 
Scripting Advantages 
1. Structure enforced 
2. Events can be triggered, as well as 

polling 
3. OnEnter and OnExit concept exists 
4. Can be authored by game designers 

 Easier learning curve than straight C/C++ 
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Finite-State Machine: 
Scripting Disadvantages 
 Not trivial to implement 
 Several months of development 

  Custom compiler 
 With good compile-time error feedback 

  Bytecode interpreter 
 With good debugging hooks and support 

 Scripting languages often disliked by users 
  Can never approach polish and robustness of 

commercial compilers/debuggers 
  Though, some are getting close! 

Based on Chapter 5.3, Introduction to Game Development 
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Finite-State Machine: 
Hybrid Approach 
 Use a class and C-style macros to approximate a 

scripting language 
 Allows FSM to be written completely in C++ 

leveraging existing compiler/debugger 
 Capture important features/extensions 

  OnEnter, OnExit 
  Timers 
  Handle events 
  Consistent regulated structure 
  Ability to log history 
  Modular, flexible, stack-based 
  Multiple FSMs, Concurrent FSMs 

 Can't be edited by designers or players 
 Kent says: "Hybrid approaches are evil!" 

Based on Chapter 5.3, Introduction to Game Development 


