
IMGD 1001:
Programming Practices;

Artificial Intelligence

Robert W. Lindeman
Associate Professor

Interactive Media & Game Development
Department of Computer Science
Worcester Polytechnic Institute

gogo@wpi.edu

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

2	

Outline
 Common Practices
 Artificial Intelligence

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

3	

Common Practices:
Version Control
 Database containing files and past

history of them
 Central location for all code
 Allows team to work on related files

without overwriting each other’s work
 History preserved to track down errors
 Branching and merging for platform

specific parts

Based on Chapter 3.1, Introduction to Game Development

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

4	

Common Practices:
Quality (1 of 3)
 Code reviews – walk through code by other

programmer(s)
 Formal or informal
  "Two pairs of eyes are better than one."
 Value is that the programmer is aware that

others will read

 Asserts
 Force program to crash to help debugging

 Ex: Check condition is true at top of code, say pointer
not NULL before continuing

 Removed during release
Based on Chapter 3.1, Introduction to Game Development

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

5	

Common Practices:
Quality (2 of 3)
 Unit tests

  Low level test of part of game
  See if physics computations correct

  Tough to wait until very end and see if there's a bug
  Often automated, computer runs through combinations
  Verify before assembling

 Acceptance tests
  Verify high-level functionality working correctly

  See if levels load correctly

 Note, above are programming tests (i.e., code,
technical)
  Still turned over to testers who track bugs, do gameplay

testing

Based on Chapter 3.1, Introduction to Game Development

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

6	

Common Practices:
Quality (3 of 3)
  Bug database

 Document & track bugs
 Can be from

programmers,
publishers, customers

 Classify by severity and
priority

 Keeps bugs from falling
through cracks

 Helps see how game is
progressing

Based on Chapter 3.1, Introduction to Game Development

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

7	

Common Practices:
Pair (or "Peer") Programming

 Two programmers at one workstation
 One codes and tests, other thinks

 Switch after fixed time

 Results
 Higher-quality code

 More bugs found as they happen
 More enjoyable, higher morale
 Team cohesion
 Collective ownership

http://en.wikipedia.org/wiki/Pair_programming

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

8	

Group Exercise
 Consider game where hero is in a

pyramid full of mummies. Mummy –
wanders around maze. When hero gets
close, can “sense” and moves quicker.
When it can see hero, rushes to attack.
If wounded, flees.

 What “states” can you see? What are
the transitions? Can you suggest Game
Maker appropriate code?

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

9	

Outline
 Common Practices (done)
 Artificial Intelligence (next)

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

10	

Introduction to AI
 Opponents that are challenging, or allies

that are helpful
 Unit that is credited with acting on own

 Human-level intelligence too hard
 But under narrow circumstances can do pretty

well
 Ex: chess and Deep Blue

 Artificial Intelligence
 Around in CS for some time

Based on Chapter 5.3, Introduction to Game Development

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

11	

AI for CS different than AI for Games
 Must be smart, but purposely flawed

  Lose in a fun, challenging way

 No unintended weaknesses
  No "golden path" to defeat
 Must not look dumb

 Must perform in real time (CPU)
 Configurable by designers

  Not hard coded by programmer

 "Amount" and type of AI for game can vary
  RTS needs global strategy, FPS needs modeling of

individual units at "footstep" level
  RTS most demanding: 3 full-time AI programmers
  Puzzle, street fighting: 1 part-time AI programmer

Based on Chapter 5.3, Introduction to Game Development

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

12	

AI for Games:
Mini Outline
 Introduction (done)
 Agents (next)
 Finite State Machines

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

13	

Game Agents (1 of 3)
 Most AI focuses around game agent

  Think of agent as NPC, enemy, ally or neutral

 Loops through: sense-think-act cycle
  Acting is event specific, so talk about sense+think

Based on Chapter 5.3, Introduction to Game Development

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

14	

Game Agents (2 of 3)
 Sensing

 Gather current world state: barriers,
opponents, objects

 Need limitations: avoid "cheat" of looking at
game data

 Typically, same constraints as player (vision,
hearing range)
 Often done simply by distance direction (not

computed as per actual vision)
 Model communication (data to other agents)

and reaction times (can build in delay)

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

15	

Game Agents (3 of 3)
 Thinking

 Evaluate information and make a decision
 As simple or elaborate as required
 Two ways:

 Pre-coded expert knowledge, typically hand-
crafted if-then rules + randomness to make
unpredictable

 Search algorithm for best (optimal) solution

Based on Chapter 5.3, Introduction to Game Development

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

16	

Game Agents:
Thinking (1 of 3)
 Expert Knowledge

  Finite state machines, decision trees, … (FSM most
popular, details next)

  Appealing since simple, natural, embodies common
sense
 Ex: if you see enemy weaker than you, attack. If

you see enemy stronger, then flee!
 Often quite adequate for many AI tasks
  Trouble is, often does not scale

 Complex situations have many factors
 Add more rules
 Becomes brittle

Based on Chapter 5.3, Introduction to Game Development

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

17	

Game Agents:
Thinking (2 of 3)
 Search

 Look ahead and see what move to do next
 Ex: piece on game board, pathfinding

 Machine learning
 Evaluate past actions, use for future
 Techniques show promise, but typically too

slow
 Need to learn and remember

Based on Chapter 5.3, Introduction to Game Development

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

18	

Game Agents:
Thinking (3 of 3)
 Making agents stupid

 Many cases, easy to make agents dominate
 Ex: bot always gets head-shot

 Dumb down by giving "human" conditions, longer
reaction times, make unnecessarily vulnerable

 Agent cheating
  Ideally, don't have unfair advantage (such as more

attributes or more knowledge)
  But sometimes might, to make a challenge

 Remember, that's the goal, AI lose in challenging way
  Best to let player know how agent is doing

Based on Chapter 5.3, Introduction to Game Development

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

19	

AI for Games:
Mini Outline
 Introduction (done)
 Agents (done)
 Finite State Machines (next)

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

20	

Finite State Machines (1 of 2)

 Abstract model of computation
 Formally:

  Set of states
  A starting state
  An input vocabulary
  A transition function that maps inputs and the

current state to a next state

Wander Attack

Flee

See Enemy

Low
 H

ealth
N

o E
nem

y

No Enemy

Based on Chapter 5.3, Introduction to Game Development

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

21	

Finite State Machines (2 of 2)
 Most common game AI software pattern

  Natural correspondence between states and
behaviors

  Easy to understand
  Easy to diagram
  Easy to program
  Easy to debug
  Completely general to any problem

 Problems
  Explosion of states
 Often created with ad-hoc structure

Based on Chapter 5.3, Introduction to Game Development

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

22	

Finite-State Machines:
Approaches
 Three approaches

 Hardcoded (switch statement)
 Scripted
 Hybrid Approach

Based on Chapter 5.3, Introduction to Game Development

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

23	

Finite-State Machine:
Hardcoded FSM
void RunLogic(int * state) {
 switch(state) {
 case 0: //Wander
 Wander();
 if(SeeEnemy()) { *state = 1; }
 break;

 case 1: //Attack
 Attack();
 if(LowOnHealth()) { *state = 2; }
 if(NoEnemy()) { *state = 0; }
 break;

 case 2: //Flee
 Flee();
 if(NoEnemy()) { *state = 0; }
 break;
 }
}

Based on Chapter 5.3, Introduction to Game Development

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

24	

Finite-State Machine:
Problems with Switch FSM
1. Code is ad hoc

  Language doesn't enforce structure

2. Transitions result from polling
 Inefficient – event-driven sometimes better

3. Can't determine 1st time state is entered
4. Can't be edited or specified by game

designers or players

Based on Chapter 5.3, Introduction to Game Development

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

25	

Finite-State Machine:
Scripted with alternative language
AgentFSM
{
 State(STATE_Wander)
 OnUpdate
 Execute(Wander)
 if(SeeEnemy) SetState(STATE_Attack)
 OnEvent(AttackedByEnemy)
 SetState(Attack)
 State(STATE_Attack)
 OnEnter
 Execute(PrepareWeapon)
 OnUpdate
 Execute(Attack)
 if(LowOnHealth) SetState(STATE_Flee)
 if(NoEnemy) SetState(STATE_Wander)
 OnExit
 Execute(StoreWeapon)
 State(STATE_Flee)
 OnUpdate
 Execute(Flee)
 if(NoEnemy) SetState(STATE_Wander)
}

Based on Chapter 5.3, Introduction to Game Development

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

26	

Finite-State Machine:
Scripting Advantages
1. Structure enforced
2. Events can be triggered, as well as

polling
3. OnEnter and OnExit concept exists
4. Can be authored by game designers

 Easier learning curve than straight C/C++

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

27	

Finite-State Machine:
Scripting Disadvantages
 Not trivial to implement
 Several months of development

  Custom compiler
 With good compile-time error feedback

  Bytecode interpreter
 With good debugging hooks and support

 Scripting languages often disliked by users
  Can never approach polish and robustness of

commercial compilers/debuggers
  Though, some are getting close!

Based on Chapter 5.3, Introduction to Game Development

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development 	

28	

Finite-State Machine:
Hybrid Approach
 Use a class and C-style macros to approximate a

scripting language
 Allows FSM to be written completely in C++

leveraging existing compiler/debugger
 Capture important features/extensions

  OnEnter, OnExit
  Timers
  Handle events
  Consistent regulated structure
  Ability to log history
  Modular, flexible, stack-based
  Multiple FSMs, Concurrent FSMs

 Can't be edited by designers or players
 Kent says: "Hybrid approaches are evil!"

Based on Chapter 5.3, Introduction to Game Development

