

IMGD 5100: Immersive HCI

Introduction

Robert W. Lindeman

Associate Professor
Interactive Media & Game Development
Department of Computer Science
Worcester Polytechnic Institute
gogo@wpi.edu

Course Goals

- Learn about designing, building, and evaluating immersive interfaces
- Look at how humans function
- Look at application areas
- Look at usage environments
- □ Understand the main problems/sub-fields
- Build something cool!

Assignments

- □ 2-3 Assignments
 - Each uses different technologies
- □ Paper summaries
 - You will write short summaries for several papers
- □ Final Project
 - Done in groups of two/three
 - Go deeper into one application/technology
 - Evaluate your system with a user study

Final project

- □ Choose
 - User population
 - Application
 - Usage environment (e.g., mobile)
- Choose I/O devices/techniques
- Design the application
- Design the interface & interaction
- Build the system
- ☐ Assess the result

Assignments

- □ Can be done in teams
 - Clearly define what each member will be responsible for
- □ Can use any software/language you like
- □ Samples
 - OpenGL, DirectX, Java3D, OpenSceneGraph, OpenSG, FreeVR, Android, iphone
 - Game-engine code (Unity, UE4, C4)
- □ Resources
 - HIVE has many devices for you to use.
 - Field trip later in the semester
 - (old) Android phones

What is Virtual Reality?

□You tell me!

Virtual Reality Systems

```
Link Flight Simulator
□ 1929 -
□ 1946 -
             First computer (ENIAC)
■ 1956 -
            Sensorama
■ 1960 -
             Heileg's HMD
□ 1965-68 – The Ultimate Display
□ 1972 -
            Pong
□ 1973 -
             Evans & Sutherland Computer Corp.
□ 1976 -
            Videoplace
            Apple, Commodore, and Radio Shack PCs
■ 1977 -
■ 1979 -
             First Data Glove [Sayre] (powerglove -89)
■ 1981 – SGI founded
□ 1985 -
         NASA AMES
□ 1986-89 - Super Cockpit Program
□ 1990s –
             Boom Displays
■ 1992 –
            CAVE (at SIGGRAPH)
■ 1995 -
         Workbench
□ 1998 -
             Walking Experiment
```


Link Flight Simulator

- □ 1929 Edward Link develops a mechanical flight simulator
- ☐ Train in a synthetic environment
- Used mechanical linkages
- Instrument (blind) flying
- □ http://www.wpafb.af.mil/ museum/early_years/ ey19a.htm

Sensorama

Morton Heilig, 1956

Motorcycle simulator - all senses

- visual (city scenes)
- sound (engine, city sounds)
- vibration (engine)
- smell (exhaust, food)

Extend the notion of a 'movie'

Heilig's HMD (1960)

Simulation Mask from Heilig's 1960 patent

- 3D photographic slides
- WFOV optics with focus control
- Stereo sound
- Smell

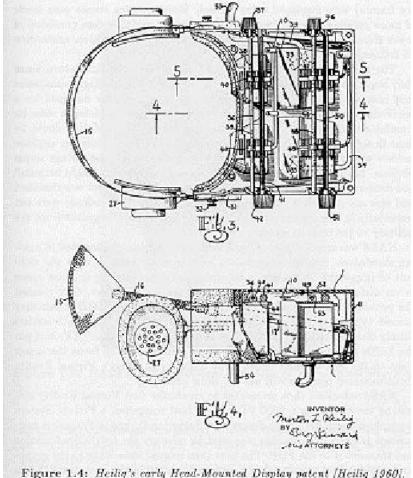


Figure 1.4: Heilig's early Head-Mounted Display patent [Heilig 1960].

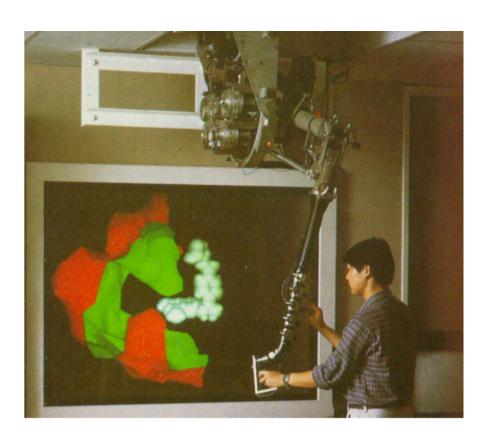
Ivan Sutherland

- ☐ The Ultimate Display (FIPS 1965)
 - Data Visualization: "A display connected to a digital computer...is a looking glass into a mathematical wonderland."
 - Body Tracking: "The computer can easily sense the positions of almost any of our body muscles."

Ultimate Display (cont.)

- Virtual Environments that mimic real environments: "A chair display in such a room would be good enough to sit in. Handcuffs displayed in such a room would be confining, and a bullet displayed in such a room would be fatal."
- VEs that go beyond reality: "There is no reason why the objects displayed by a computer have to follow ordinary rules of physical reality with which we are familiar."

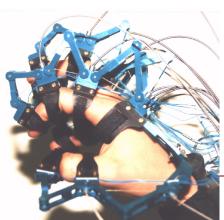
First HMD-Based VR



1965 - The Ultimate Display paper by Sutherland 1968 - Ian Sutherland's HMD

Molecular Docking Simulator

- □ Incorporated force feedback
- □ Visualize an abstract simulation

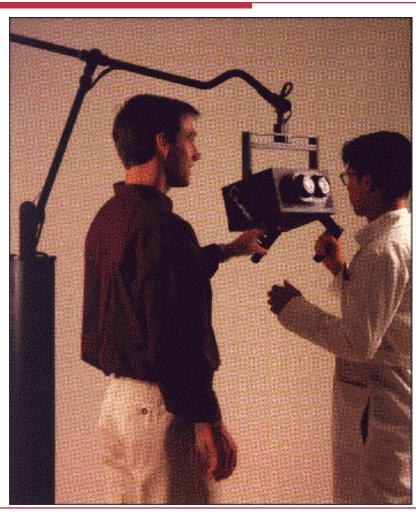


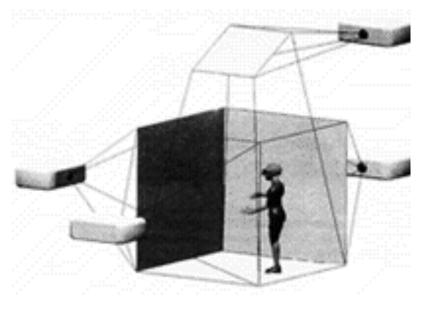
Data Gloves

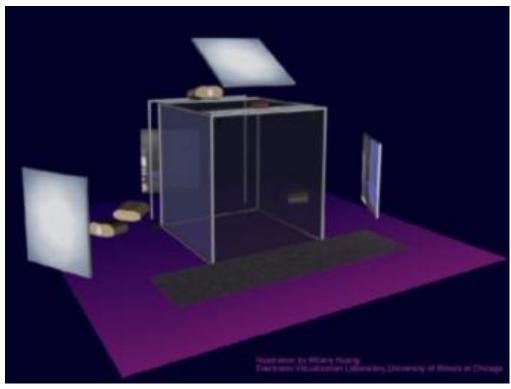
- □ Light, electrical or metal detectors compute "bend"
- □ Electrical sensors detect pinches
- Force feedback mechanical linkages


1985 - NASA Ames HMD

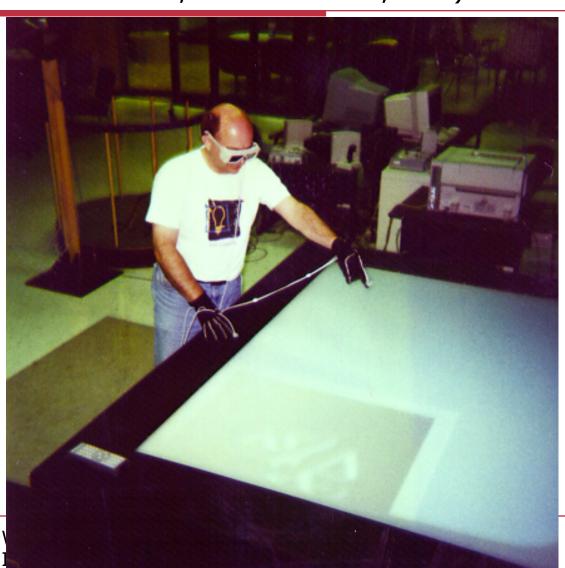
- McGreevy and and Humphries
 - Wearable immersive HMDs
 - LCD "Watchman" displays
 - LEEP Optics
- ☐ Led to VIVID, led by Scott Fisher







CAVE - 1992

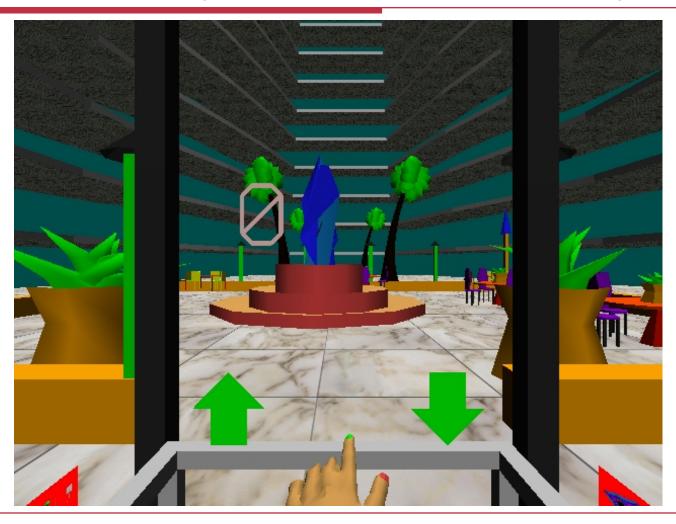


Virtual Workbench-1995

(Responsive Workbench, Immersidesk, etc.)

Excellent VE

- □ UNC Pit Experiment
- □ Fear of Heights a Strong Response
- □ Thousands of visitors
- Compelling Experience
 - Haptics
 - Low Latency
 - High Visual Quality


VPL Founded - 1985

- ☐ First VR Company
- □ VPL Research by Jaron Lanier and Thomas Zimmerman
 - Data Glove
 - Term: Virtual Reality

1995 - Effectiveness of computer-generated (VR) graded exposure in the treatment of acrophobia in *American Journal of Psychiatry*

Major Reinvigoration: Hardware Evolution

- ☐ High expense
- PC performance surpasses Graphics supercomputers
 - SGI RealityEngine (300k tris 1993)
 - XBOX (150 mil tri/sec 2001)
 - XBOX360 (500 mil tri/sec 2005)
 - WiiMote/MotionPlus
 - Sony MOVE (SHOW MOVIE!)
 - MS Kinect (SHOW MOVIE!)
- □ Large LCDs are "cheap"
- □ 3D displays are here
- □ Low-cost Head Mounted Displays (HMDs)

Why Study Immersive HCI?

- □ Relevant to real-world tasks
 - Can use familiarity to ease adaptation
 - Can increase realism of experience
- Mature technology
 - Cheap, robust solutions
 - Need to create interface mappings
- □3D interaction is difficult
 - Many VR/gaming systems lack necessary cues
 - Adapting WIMP techniques is not adequate

Why Study Immersive HCI? WPI (cont.)

- Current approaches are either too simple or unusable
 - Since users have problems, dumb it down!
 - Need to be able to perform all actions though!
- □ Ripe area for study
 - Very hot area of HCI
 - We know a lot about doing things in 2D
 - And also about doing things in the real world
 - Mobile wearable systems emerging

A Brief History (cont.)

- ☐ HCI draws on
 - Perception
 - Cognition
 - Linguistics
 - Human factors
 - Ethnography
 - Graphic design
 - Computer science
 - ...

A Brief History (cont.)

- Technology developments also drive growth
 - Flight simulators
 - 3D Graphics
 - Augmented Reality (AR)
 - Virtual Reality (VR)
 - Immersive Gaming

Basic Interaction Tasks in VR (Bowman *et al.*)

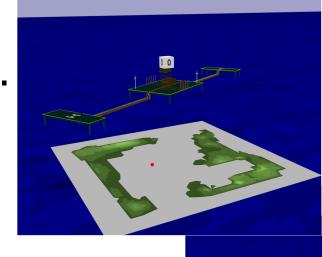
- □ Object Selection & Manipulation
 - What do I want to manipulate?
 - How can I manipulate it?
- Navigation
 - Wayfinding: How do I know where I am, and how to get where I am going?
 - Travel: How do I get there? (locomotion)
- System Control
 - How do I change system parameters?
- Symbolic Input
 - Inputting text and numbers
- Avatar Control
 - How do you control you?

World Builder (Bruce Branit)

- □ Concept film
- □ Can you spot the different tasks?

Dealing with Objects

- □ Problems
 - Ambiguity
 - Distance
- □ Selection Approaches
 - Direct / enhanced grabbing
 - Ray-casting techniques
 - Image-plane techniques
- Manipulation Approaches
 - Direct position / orientation control
 - Worlds in miniature
 - Skewers
 - Surrogates



Courtesy: D. Bowman

Navigation: Wayfinding

- □ People get lost/disoriented easily
- □ Traditional tools
 - Maps (North-up vs. Forward-up)
 - Landmarks
 - Spoken directions
- Non-traditional
 - Callouts
 - Zooming

Navigation: Travel

□ Problems

Limited physical space, unlimited virtual

space

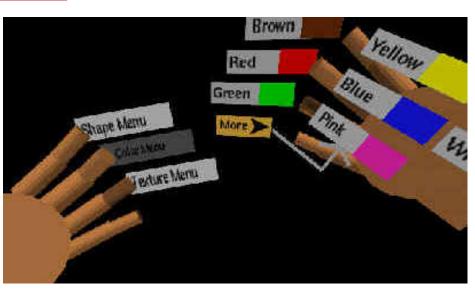
Cables

□ Approaches

- Fly where you point/look
- Treadmills
- Walking in place
- Big track ball

Image: www.virtusphere.com

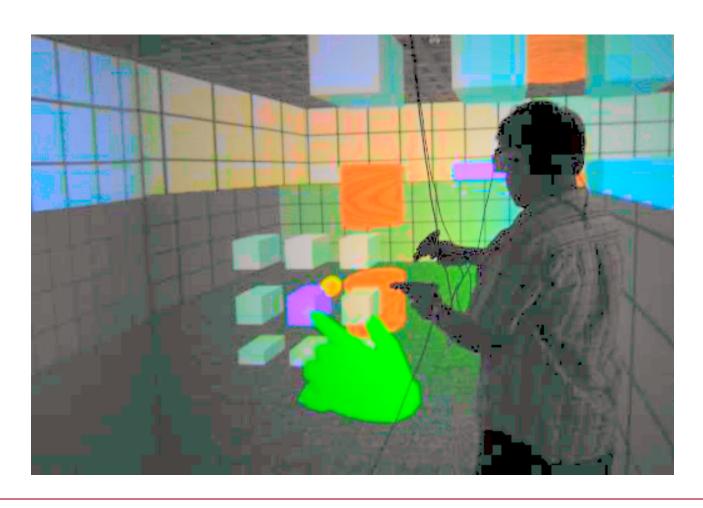
System Control


- Need to manipulate widgets
 - Lighting effects
 - Object representation
 - Data filtering
- Approaches
 - Floating windows
 - Hand-held windows
 - Gestures
 - Menus on fingers

System Control Examples

Courtesy: R. Lindeman

Courtesy: D. Bowman

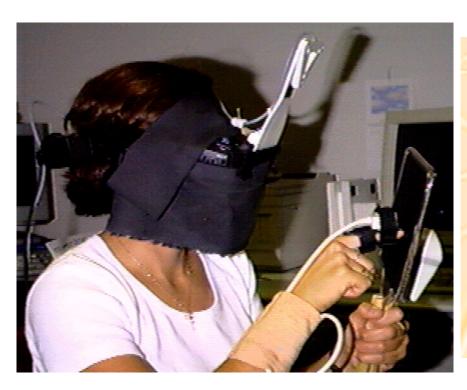


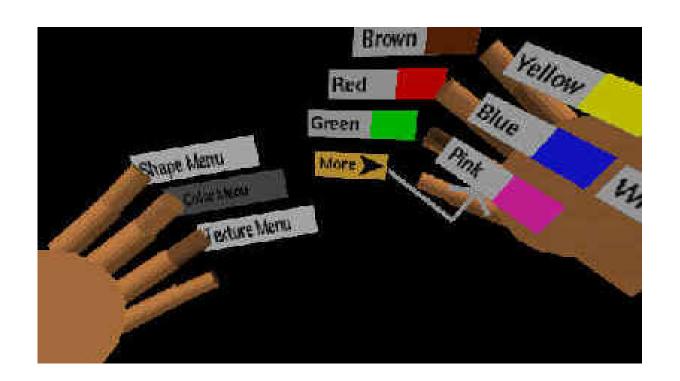
User, Task & Environment

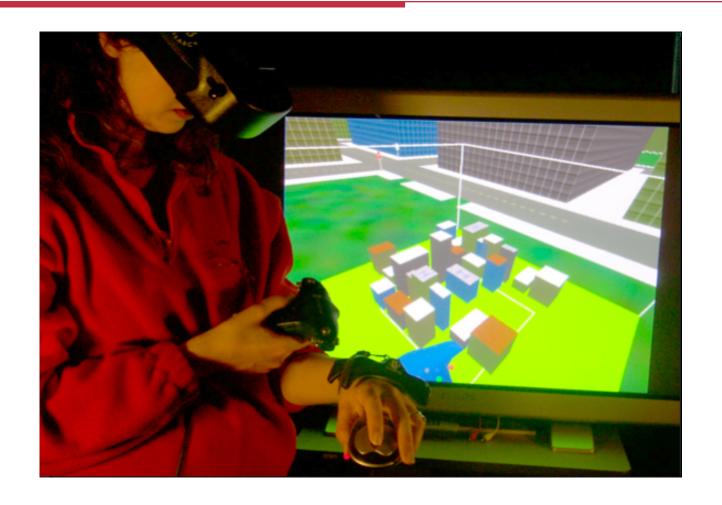
- □ The "optimal" interface will depend on the capabilities of the *user*, the nature of the *task* being performed, and the constraints of the *environment*.
- □User
 - Dexterity, level of expertise
- □Task
 - Granularity and complexity of task
- □ Environment
 - Stationary, moving, noisy, etc.

Direct Manipulation

Can We Do WIMP in VR?


Wearable Interaction with WPI Haptics: Immersion *CyberGrasp*





How Do We Do Menus?

Interface Devices

Augmented Reality (AR)

AR (cont.)

- Wearable mobile systems emerging
 - Google Glass
 - □ https://www.google.com/glass/start/
 - Epson Moverio
 - □ http://www.epson.com/moverio/
 - Meta
 - □ https://www.spaceglasses.com/
 - CastAR
 - □ http://technicalillusions.com/
 - Just Android phones with special modifications

Google Project Glass

- □ Concept videos
- ☐ How does the user interact?

What Can We Take From Sci-Fi?

Iron Man Interaction

□ What can we take from this?

Sight Video