# Effective Near-Field Haptics in Virtual Environments

#### Dr. Robert W. Lindeman

Department of Computer Science The George Washington University gogo@gwu.edu

### **Overview**

- Motivation
- Near-field haptic approaches
- Our prototype
- Empirical studies
- Application areas

### **Problem Statement**

- Virtual environments are typically limited to visual and audio cues
  - Do not faithfully recreate reality
  - Sensorially-deprived environments
  - Do not take advantage of human bandwidth capacity
  - Users only receive cues produced by the system
  - Difficult to manipulate objects effectively

## Problem Statement (cont.)

#### Virtual contact

- What should we do when we know that contact has been made with a virtual object?
- The output of collision detection is the input to virtual contact
- Cues for understanding the nature of contact with objects is typically over-simplified

# **Some Cueing Options**

| Cueing Technique       | Modality       | Mapped to                              |
|------------------------|----------------|----------------------------------------|
| Color change           | Visual         | Location/depth of penetration          |
| Vector glyphs          | Visual         | Force and direction of contact         |
| Texture distortion     | Visual         | Location/depth of penetration          |
| Shape distortion       | Visual         | Location/depth of penetration          |
| Contact illumination   | Visual         | Location of collision                  |
| Pitch change           | Auditory       | Depth of penetration                   |
| Amplitude change       | Auditory       | Force of collision                     |
| Spatialization         | Auditory       | Location of collision                  |
| Vibrotactile amplitude | Haptic/Tactile | Location/velocity/depth of penetration |

### **The Nature of Near-Field Haptics**

Vehicular vs. personal contact

#### Object properties

- Surface (texture)
- Compliance
- Physical makeup

#### Contact properties

- Velocity
- Location(s) on the object
- Location(s) on the person

# Active- vs. Passive-Haptic Feedback

#### Active-haptic feedback

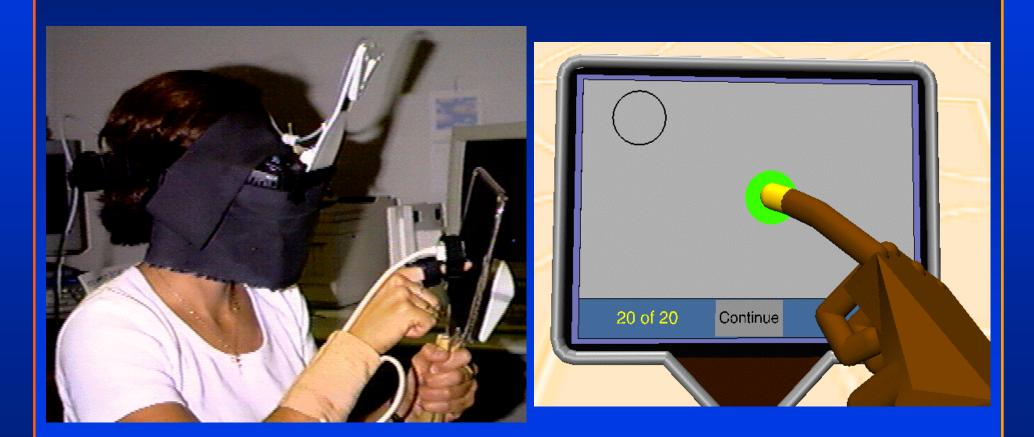
- Typically, force-reflecting devices under computer control
- Expensive
- Cumbersome

#### Passive-haptic feedback

- Inherent properties of objects
- Cheap
- High fidelity
- Limited amount and type of feedback

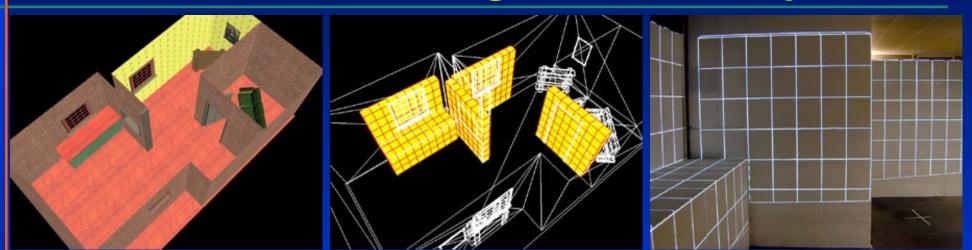
# Active-Haptic Feedback: Ex. 1 - SensAble PHANToM




http://www.sensable.com/

# Active-Haptic Feedback: Ex. 2 - Immersion *CyberGrasp*




http://www.immersion.com/

# Passive-Haptic Feedback: Ex. 1 - GW *Hand-Held Windows*



http://www.seas.gwu.edu/~gogo/

# Passive-Haptic Feedback: Ex. 2 - UNC *Being There* Project





#### http://www.cs.unc.edu/~lowk/beingthere/

## **Vibrotactile Cueing Devices**

- Vibrotactile feedback has been incorporated into many devices
  - Used for decades for the hearing impaired
  - Widely used in cell phones and pagers
    - "Manner" button
  - Console controllers from Sony, MS, Nintendo
  - PC joysticks from MS, Logitech, etc.
  - Research devices from Immersion Corp., Virtual Technologies, etc.

# **Technologies for Producing Vibrotactile Cues**

- Called tactors
- Arm linkages
- Pin arrays
- Voice coils
  - Speakers
- Pager motors
   DC motor with an eccentric mass



# Vibrotactile Feedback: Ex. 1 - Navy *TSAS* Project



http://www.namrl.navy.mil/accel/tsas/

# Vibrotactile Feedback: Ex. 2 - Purdue *Haptic Vest*



#### http://www.ecn.purdue.edu/HIRL/projects\_vest.html

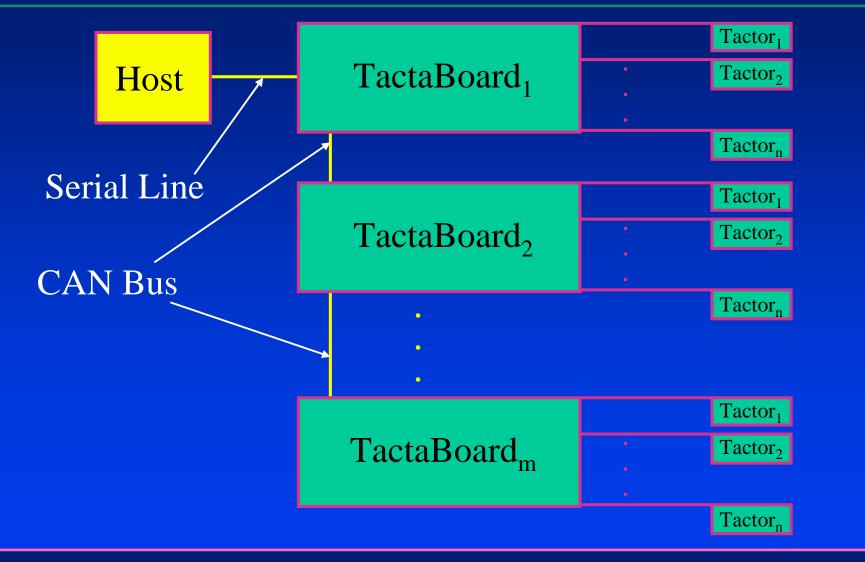
## The GW TactaBoard Design

### Design goals

- Low cost
- Low power
- High update rate
- Many form factors
- Scalable
- Different tactors
- Individual control
- Simple Interface
- Wearable

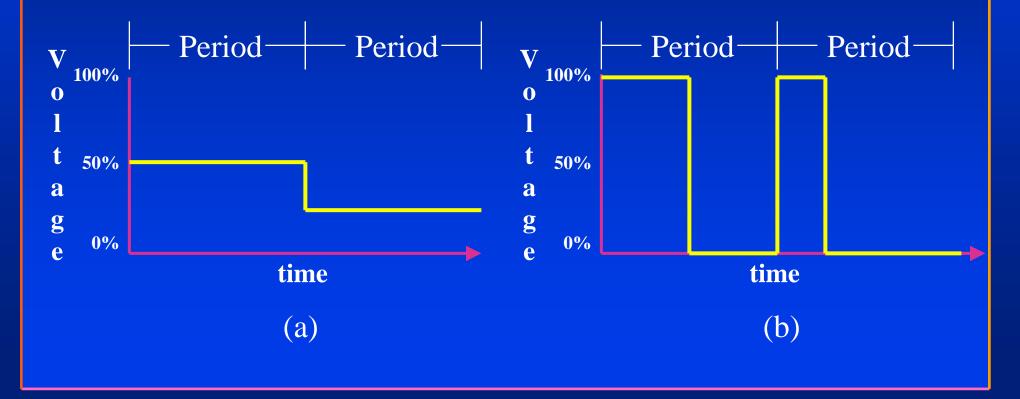


## Design decisions


- Use COTS
- Use PWM
- Low number of tactors
- Flexible design
- Communication bus
- External power supply
- Multiple PWM signals
- ASCII command set
- Small footprint

## **Current TactaBoard Prototype**




#### http://www.vibrotactile.org/tactaboard/

### **System Structure**



## **Pulse-Width Modulation (PWM)**

 Shortening the duty cycle reduces the output voltage

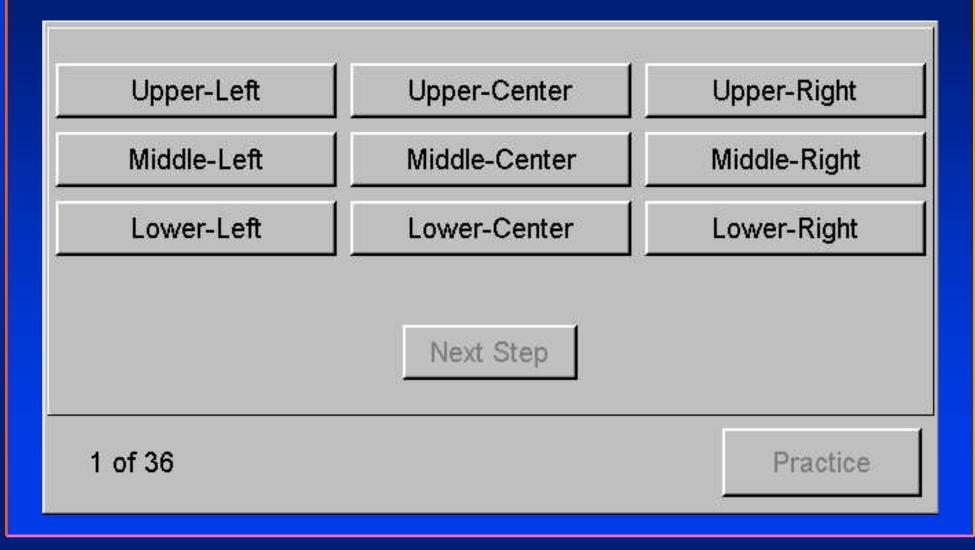


## Varying the Cues

#### Individual tactors

- Frequency
- Amplitude
- Temporal delay
- Pulses

#### Groups of tactors


- Waveform
- Tactor placement
- Interpolation method

## **Empirical Studies**

- 21 subjects
- 3 seated tasks
  - Location Discrimination
  - Visual Search
  - Intensity Matching
- 6 cm spacing
- Mouse input



# Experiment 1: Location Discrimination Task



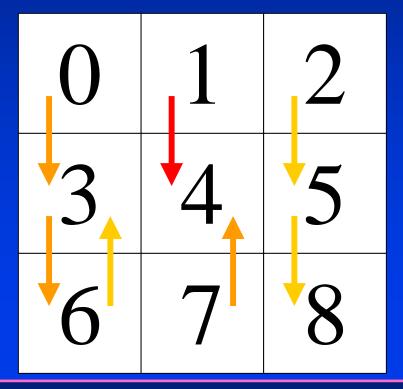
# Experiment 1: Experimental Design

Independent variable

 Each row/column combination
 Thirty-six trials

 Dependent variable

 Perceived vs. actual location


 One-second, vibrotactile pulse at 91 Hz

# Exp. 1 - Results: Mean Accuracy (percent)

| Stimulus Row         | Stimulus  | Mean | Std. | Ν   |
|----------------------|-----------|------|------|-----|
|                      | Column    |      | Dev. |     |
| Upper                | Left      | 0.83 | 0.37 | 84  |
|                      | Center    | 0.70 | 0.46 | 84  |
|                      | Right     | 0.82 | 0.39 | 84  |
|                      | Row Total | 0.79 | 0.41 | 252 |
| Middle               | Left      | 0.83 | 0.37 | 84  |
|                      | Center    | 0.88 | 0.33 | 84  |
|                      | Right     | 0.88 | 0.33 | 84  |
|                      | Row Total | 0.87 | 0.34 | 252 |
| Lower                | Left      | 0.88 | 0.33 | 84  |
|                      | Center    | 0.80 | 0.40 | 84  |
|                      | Right     | 0.95 | 0.21 | 84  |
|                      | Row Total | 0.88 | 0.33 | 252 |
| Column Totals        | Left      | 0.85 | 0.36 | 252 |
|                      | Center    | 0.79 | 0.41 | 252 |
|                      | Right     | 0.88 | 0.32 | 252 |
| <b>Overall Total</b> |           | 0.84 | 0.36 | 756 |

### 119 mis-idents.

- Mostly vertical
- Mostly downward



# **Experiment 2:** Visual Search Task

| Ε |   | Β |   |   |   |
|---|---|---|---|---|---|
| F |   | W | D | U | V |
| L | С | Ο | Q | Т | Κ |
| Α | R | Ν | S | J | G |
|   | V |   |   |   |   |

# Experiment 2: Experimental Design

- Within-subjects design
- Independent variables
  - Visual cue type
  - Vibrotactile waveform
- Dependent variables
  - Trial time
  - Correct letter identified
- Fifty trials per treatment

# **Experiment 2: Treatments**

#### Seven treatments

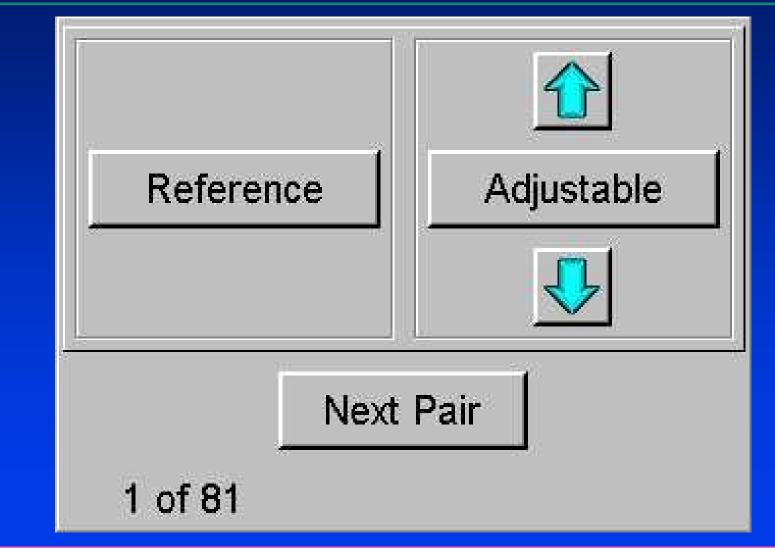
- None-None
- Single-Square
   Multu-Triange
- Multi-Square

- Multi-None
- None-Square
  Multi-Sawtooth

|               |        | Vibrotactile Cue Levels |        |          |          |
|---------------|--------|-------------------------|--------|----------|----------|
|               |        | None                    | Square | Sawtooth | Triangle |
|               | None   | X                       | X      |          |          |
| Visual<br>Cue | Single |                         | X      |          |          |
| Levels        | Multi  | X                       | X      | X        | X        |

# Exp. 2 - Results: Mean Trial Time (seconds)

| Treatment             | Mean                     | Std.<br>Dev. | Ν    |  |  |
|-----------------------|--------------------------|--------------|------|--|--|
| By Visual Cue Type    |                          |              |      |  |  |
| None-None             | 1924.30                  | 984.54       | 1050 |  |  |
| None-Square           | 1693.51                  | 702.45       | 1050 |  |  |
| Single-Square         | 1336.76                  | 349.54       | 1050 |  |  |
| Multi-Square          | 1301.46                  | 342.33       | 1050 |  |  |
| Total                 | 1564.01                  | 701.45       | 4200 |  |  |
| By Vibrotactile Cue T | By Vibrotactile Cue Type |              |      |  |  |
| None-None             | 1924.30                  | 984.54       | 1050 |  |  |
| Multi-None            | 1338.64                  | 375.68       | 1050 |  |  |
| Multi-Square          | 1301.46                  | 342.33       | 1050 |  |  |
| Multi-Sawtooth        | 1337.26                  | 423.55       | 1050 |  |  |
| Multi-Triangle        | 1308.05                  | 381.31       | 1050 |  |  |
| Total                 | 1441.94                  | 607.17       | 5250 |  |  |
| Overall Total         | 1462.85                  | 601.14       | 7350 |  |  |


|               | Homogeneous Subsets x Visual Cue |         |  |  |  |  |
|---------------|----------------------------------|---------|--|--|--|--|
| Treatment     | 1 2 3                            |         |  |  |  |  |
| Multi-Square  | 1301.46                          |         |  |  |  |  |
| Single-Square | 1336.76                          |         |  |  |  |  |
| None-Square   |                                  | 1693.51 |  |  |  |  |
| None-None     | 1924.30                          |         |  |  |  |  |

|                | Homogeneous Subsets x Vibrotactile Cue |         |  |  |
|----------------|----------------------------------------|---------|--|--|
| Treatment      | 1 2                                    |         |  |  |
| Multi-Square   | 1301.46                                |         |  |  |
| Multi-Triangle | 1308.05                                |         |  |  |
| Multi-Sawtooth | 1337.26                                |         |  |  |
| Multi-None     | 1338.64                                |         |  |  |
| None-None      |                                        | 1924.30 |  |  |

# Exp. 2 - Results: Discussion

- Visuals dominated
- Vibrotactile helped in the absence of visuals
- Latency of our apparatus
- No difference for different waveforms

# Experiment 3: Intensity Matching Task



# Experiment 3: Experimental Design

- Eighty-one trials
- Independent variables
  - Frequency
  - Location
- Dependent variable
  - Numerical difference between the actual and perceived intensity
- Ten frequencies (Hz)
   38, 54, 65, 68, 69, 72, 75, 78, 81, 83

# Exp. 3 - Results: Mean Difference (Hz)

| Stimulus Comparison    | Mean                        | Std.  | Ν   |  |  |
|------------------------|-----------------------------|-------|-----|--|--|
|                        |                             | Dev.  |     |  |  |
| By Location            |                             |       |     |  |  |
| Upper-Left             | 12.84                       | 9.87  | 189 |  |  |
| Upper-Center           | 24.76                       | 18.67 | 189 |  |  |
| Upper-Right            | 20.18                       | 17.12 | 189 |  |  |
| Middle-Left            | 14.80                       | 10.75 | 189 |  |  |
| Middle-Center          | 16.68                       | 12.85 | 189 |  |  |
| Middle-Right           | 16.73                       | 12.89 | 189 |  |  |
| Lower-Left             | 13.23                       | 10.65 | 189 |  |  |
| Lower-Center           | 20.96                       | 16.86 | 189 |  |  |
| Lower-Right            | 13.80                       | 10.51 | 189 |  |  |
| By Reference Frequency | By Reference Frequency (Hz) |       |     |  |  |
| 38 (1)                 | 16.92                       | 15.56 | 105 |  |  |
| 54 (2)                 | 19.03                       | 9.94  | 231 |  |  |
| 65 (3)                 | 26.20                       | 16.58 | 147 |  |  |
| 68 (4)                 | 19.11                       | 14.94 | 168 |  |  |
| 69 (5)                 | 15.10                       | 12.47 | 231 |  |  |
| 72 (6)                 | 19.05                       | 15.69 | 168 |  |  |
| 75 (7)                 | 16.95                       | 15.07 | 168 |  |  |
| 78 (8)                 | 13.14                       | 13.95 | 189 |  |  |
| 81 (9)                 | 14.05                       | 13.34 | 210 |  |  |
| 83 (10)                | 10.70                       | 8.50  | 84  |  |  |

| By Row                     |             |        |      |  |  |
|----------------------------|-------------|--------|------|--|--|
| Upper Row                  | 19.26       | 16.42  | 567  |  |  |
| Middle Row                 | 16.07       | 12.21  | 567  |  |  |
| Lower Row                  | 16.00       | 13.46  | 567  |  |  |
| By Column                  |             | 1      |      |  |  |
| Left Column                | 13.62       | 10.45  | 567  |  |  |
| Center Column              | 20.80       | 16.61  | 567  |  |  |
| Right Column               | 16.90       | 14.00  | 567  |  |  |
| By Reference/Adjustal      | ole Relatio | onship |      |  |  |
| Same Tactor                | 6.72        | 6.63   | 189  |  |  |
| Same Column                | 17.77       | 13.73  | 378  |  |  |
| Same Row                   | 17.26       | 14.50  | 378  |  |  |
| Other                      | 19.30       | 14.60  | 756  |  |  |
| By Euclidean Distance (cm) |             |        |      |  |  |
| Distance of 0.00           | 6.72        | 6.72   | 189  |  |  |
| Distance of 6.00           | 18.03       | 14.35  | 504  |  |  |
| Distance of 8.49           | 19.11       | 14.50  | 336  |  |  |
| Distance of 12.00          | 16.49       | 13.60  | 252  |  |  |
| Distance of 13.42          | 18.86       | 14.29  | 336  |  |  |
| Distance of 16.97          | 21.80       | 16.04  | 84   |  |  |
| Overall Total              | 17.11       | 14.22  | 1701 |  |  |

# Exp. 3 - Results: Discussion

#### Complex relationship

- Location and frequency
- 7 Hz difference at the same location is encouraging
- No clear mapping from one location to another
- Higher frequencies seem to lead to better performance
- Close to spine was worse
   Vertical confusion

## Applications

Data perceptualization Map variables to tactors Spatial awareness Driver warning system (vibrotactile Bott's dots) Navigational aid Firefighter guidance Non-verbal communication • Map hand signals to vibrotactile patterns

### Acknowledgments

- ONR VIRTE project
- DARPA
- ATR, Japan

For more info. on the TactaBoard:
 http://www.vibrotactile.org/