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Abstract

We present a method for optimizing the reconstomcéind rendering of 3D objects from multiple imabgautilizing
the latest features of consumer-level graphics vaarel based on shader model 4.0. We acceleratel Vil
reconstruction by rewriting a shape-from-silhouetligorithm to execute on the GPU's parallel architee. Rendering
is optimized through the application of geometraddrs to generate billboarding microfacets textwét captured
images. We also present a method for handling simsiun the camera selection process that is opgichfor execution
on the GPU. Execution time is further improved bpdering intermediate results directly to textwrerinimize the
number of data transfers between graphics and mamory. We show our GPU based system to be signific more
efficient than a purely CPU-based approach, dukdagarallel nature of the GPU, while maintainimgpical quality.

Key Words: 3D Reconstruction, GPGPU, Image-Based ModelingRewtdering, Microfacet Billboarding.

1 Introduction

3D reconstruction and free view rendering has la@eimportant topic in computer graphics and
computer vision for many years. A variety of teciugs have been proposed to solve this problem,awith
wide range of quality and speed, and hardware reqpants [1-4]. While early techniques were slow
(partially due to limited hardware resources) aratipced crude-looking results, recent advances in
hardware complexity and computer vision algorithrase produced more realistic images from novel
viewpoints in near-real time [2][5]. Most implematibns fall under two categories: geometry-based or
image-based. Geometry based solutions utilizetiomail rendering techniques, and thus require h ldgel
of detail to generate accurate surfaces. Imagedoaselering attempts to solve this drawback byquering
the rendering step using captured images. As $tishot necessary to have an exact geometric hafde
the object being rendered [6]. A common techniqueadndering such scenes is to create a rough model
from the captured images and then render the maiied) image-based techniques. The most common way
of creating this model from silhouette data isshape-from-silhouette (SFS) technique [7-10]. Maision
systems have taken this approach [11-13] after #aea al. proposed "Virtualized Reality" as a nésual
medium for manipulating and rendering pre-recorsiashes [4].

However, the SFS approach has the downside ofdugtputational complexity due to the need to back-
project each point onto all silhouettes. This carhndled by using clusters to process the nee-ti
modeling and rendering as Matsuyama et al. and Beda chose to do, but this increases system
costs[7][14].
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Meanwhile, advances in consumer level programmgtaphics hardware have given researchers access
to powerful hardware acceleration. Despite the thet these GPUs (Graphics Processing Units) are
programmable, their specialized nature and CongufRead Exclusive Write Single Instruction Multiple
Data (CREW SIMD) programming model restricts theds of operations that can be performed efficiently
Despite these limitations, many researchers hagarbt take advantage of the specialized natutbesfe
processors to accelerate General-purpose Progranunithe GPU (GPGPU) [15].

A number of computer vision techniques already t@theantage of GPGPU techniques to perform their
computations [16-18]. However, the hardware induistrconstantly adding new features to their hardwa
which means that such techniques soon are unabldize the full potential of the latest graphizardware.
Recently, the emergence of geometry shaders arnghtiter model 4.0 has added a new level of power an
flexibility that most GPGPU techniques have nottaéen advantage of.

In this paper we present a method for acceleratiegprocess of reconstructing and rendering a visua
hull from multiple segmented camera images usirglétest features of widely available consumerileve
graphics hardware. While we build upon a numbeestablished methods such as voxel carving using
shape-from-silhouette, we also integrate a novehatk for solving camera selection on the GPU using
depth textures. Additionally, the system we presemné provides full hardware-acceleration for atid@ling
and rendering tasks, and avoids swapping interrreedésults between main memory and graphics memory
by rendering directly to texture memory. The resoiitthis work is a GPU- based approach to the
reconstruction and rendering stages of the imagjstem, which we show to be more efficient tharPUC
based approach.

In section Il we present an overview of a CPU baked-viewpoint system that takes advantage of
powerful techniques such as shape-from-silhouette3D reconstruction, and microfacet billboardiray f
rendering. In section Il we optimize these techies| using vertex, geometry and fragment shadersrund
shader model 4.0. Finally, we quantify the imp&ett these optimizations have had on system perfarena
and accuracy in section IV. Section V wraps up withclusions and an overview of future work.

2 3D Reconstruction and Free-Viewpoint Rendering

System Overview

Our free-viewpoint video system takes images frtandard video cameras and constructs a 3D model of
the objects contained within, from which it rendeideo of the scene from virtual cameras from novel
viewpoints. This is accomplished by segmentingdaptured images to extract foreground silhouettes a
using these silhouettes to construct a voxel-basedel of the object. The original images are theeduto
texture this model during the rendering process.

The free-viewpoint system uses a series of “enwir@mtal” cameras oriented towards the center of the
capture space (Fig. 1). The cameras are off-tef-sameras permanently affixed to the project sp&cior
to recording, each camera's intrinsic parameterstoftion coefficients, etc) and extrinsic paramete
(position and orientation) are calculated usingddiération method presented in [1]. A robust segtation
algorithm presented in [19] calculates the foregrbaf each image and generates an image mask fieerea
referred to as a segmentation mask).

After the segmentation masks have been computese@sin the top-right corner of Fig. 1), the syste
reconstructs the visual hull based on a Shape-Bitinouette (SFS) algorithm which carves the spategu
the segmentation masks and precomputed cameraat@ib parameters [19]. The space is modeled as a
regular voxel grid, with the value of each voxaligating the presence of a foreground object. Tdwel
model is carved by projecting the silhouette irtte voxel space and culling any voxels that lietia t
background region in the 3D modeling step preseimtdedg. 1. Once the model is computed, we employ a
version of the microfacet billboarding techniquégrally presented in [20] to render the scene framy
viewpoint. The resulting rendered images are texktiy mapping the individual microfacets to thedms
captured by the cameras. We have found throughriexpetation that correct camera selection for each
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Fig. 1. Flow diagram of free-view imaging system.

microfacet is critical to the perceived qualitytbe final render. Figure 1 presents a graphicahvoee of
the system.

Visual Hull Reconstruction

Visual hull reconstruction is the process of conmyta 3D model of a scene from image data [21]. Our
system does this with a 'shape-from-silhouettehotkion a voxel grid that occupies the target spaldee
resulting hull is formed by projecting the silhagst obtained from the segmentation masks into txelv
grid. Any voxel contained within the intersectiohthese projections is considered “solid” andnidluded
in the visual hull. However, if a voxel lies owtsiof any of the silhouettes, it is culled, andfadher
processing takes place.

For example, define a system with cameras labele@,, (m=1,...N), silhouettesS,, and projection
matricesP,,. Now, assume that a pointies within a voxeM,. If V, lies within the volume occupied by the
hull, thenp must lie withinS; when projected onto the image planeCgf for everym=1,...N. If p projects
onto the background area &fr any m=1,...N, then it must lie outside of the object and idadil Thus, we
can calculate the visual hull of an object in timanner based solely on silhouette information sardera
calibration parameters.

Rendering

Many techniques exist for rendering voxel-baseda,datich with its strengths and weaknesses. One
approach is to render each voxel as a cube [2Bis dpproach is appealing because of its low coatjouial
complexity. However, this approach produces argantat appears unnatural for organic forms. [Eigur
2(a) shows the results of this rendering method.

Another popular method of rendering voxel-basedadat the marching cubes algorithm originally
published in [23]. Since each vertex must lie witbr outside of the surface being modeled, theecaa
finite number of possible configurations for a giveube's geometry. Lookup tables and vertex intation
allow the appropriate polygons to be generatedkiyuior each cube. The resulting mesh is more thdai
but has a very high polygon count as seen in Klg. 2
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(a) cube-based render (b) marching cubes rendei(c) microfacet billboarding render

Fig. 2. Three methods for rendering a voxel-basedm

Microfacet billboarding, by contrast, generatesrale polygon for each voxel that defines the model
[24]. The microfacet is defined as, “a slice whintersects the center of the voxel and is vertioathe
viewing direction” (see Fig. 2(c)) [20]. Thus, the virtual camera is rotated around the modelntirenals
of each rendered microfacet are adjusted to bdlglata the virtual camera’s view vector. Each puly
generated is sized to match the size of the vaxepresents. In a regular voxel grid, each sid@efacet
must be at least three times the size of the Viexgith.

This ensures that the voxel will cover enough dre¢he final image to prevent gaps between facets
regardless of viewing angle.

Through experimentation, we have determined thatrésults of the microfacet billboarding technique
form the exact same shape as the results of thehingrcubes algorithm with significantly less cortgiion
required. We believe this is due to the naturéhefioxel representation of the visual hull. Thedisantage
to microfacet billboarding lies in the fact thaighores the surface properties of the model beénglered,
specifically the normals. Due to the fact that we asing captured images as the basis for textung
objects, we do not need to do any lighting calooifest As a result, this limitation does not hawsgmificant
impact on the quality of our results.

Camera Selection and Texturing

Our system is based on image-based renderinguasstreal images to produce results that do nairee
a high level of geometric complexity [2]. Becawdacclusion and changes in a surface's appeathreto
lighting conditions and viewing angle, great canestrbe taken to select the appropriate camerag@sis
texture for each microfacet. Improper camera selectan lead to unrealistic images due to manyofact
including distortion, clipping and occlusion.

C A (C
cos{ @)=V, P11V C amera ( m)

m!

Virtual Camera (P )

Voxel (V)

Fig. 3. Calculation of viewing angl
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Our system implements a system by which every mopte voxel ranks the environmental cameras
based on several criteria. This is accomplisheddmputing a “visibility score” for each camera ahdn
sorting the cameras based on this value.

The first criterion considered is the angle at whibe camera is viewing the voxel. Given a physical
camera G, virtual viewpoint B, and a voxel ), our system compute®, . This angle represents the
difference in the viewing angles between the plajsand virtual camera. It is computed by taking the
inverse cosine of the dot product of the vectoB,\&and V,C, (shown in Fig. 3)®,  is used as the initial
visibility score for each camera Cm in the sceng¢hab the camera with the small€si,, can be selected to
texture the voxel. Additionally, the texture cooralies of the voxel are computed for each camerthelf
texture coordinates lie outside of the capturedgenahe visibility score is set to an arbitrariigln value to
prevent the use of that camera.

The primary problem with this method, however hiattit ignores the possibility of occlusion. Wheann
trivial objects are recorded by the proposed systd® model generated often occludes itself in one
several of the captured camera images. For examplen the person being recorded held their arm up
between one of the cameras and their body, thedrobtheir arm would be used to texture not onky @m
itself, but also part of their body. For exampl@.F demonstrates this problem. Figure 4(a) displhe
scene rendered from the camera's angle, while 4tlgy. shows the same scene rendered from a slightly
higher angle. Notice that the texture of the handendered on the chest as well. Proper segmamtatid
occlusion detection can help eliminate this problem

(a)Perspective from camera (b) Higher angle

Fig. 4. Occlusion problem example.

Given a viewpoinP,, a voxelV, is considered occluded if there exists a vaXesuch thatV lies directly
betweenV, andP,. Thus, one method of checking for occlusion isise a three-dimensional version of
Bresenham's line drawing algorithm to obtain therdmates of every voxel in betwe&f andP, [25]. If
any of the voxels checked is solid, thénis occluded, and another camera must be chosentdihe fact
that the line drawing algorithm works in pure irgegnath, this algorithm runs quickly, but still teeps
many accesses into the voxel model.
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Fig. 5 Sample depth textures

Alternatively, it is possible to avoid this manyolaups into the voxel model by doing some
precomputation. Before the model is rendered froenperspective of the virtual viewpoint, it is rened
from the perspective of each camera.

For a given camer&,, if every voxelV, is rendered as a microfacet to a depth buffergusire
perspective of camel@,, a depth texturdy is generated. Given a texeah Ty, the value ot represents the
distance fronC,, to the closest microfacet along the ray projeétech C,,, throught. Example results of the
depth textures generated by this method are showigi 5. Note that the intensity of each pixelressgnts
its depth; the lighter parts of the images arenfereiway than the darker parts.

Thus, when rendering, it is possible to use themthdtextures to check for occlusion. First, aafised,.
is calculated between the vox#t, and the camer&,,. Then, the vertices of the microfacet are propcte
onto the image plane @,, resulting in a set of texture coordinates. Thatagice from ¢ to the closest
microfacet at each of the corners of these textaoedinates, defined ak-d, is calculated by performing a
texture lookup into the depth texture foy at the calculated texture coordinatesd, I d,. for anyn={1,4},
thenV, is at least partially occluded by another voxdhe&dwise, the texture coordinates are used to textu
V, with the image captured b9, If V, is occluded, then the algorithm continues to chiéekremaining
cameras based on their priority until one is fothat is not occluded.

Each approach has its strengths and weaknesseshasds applicable in different situations. Using
Bresenham's algorithm is preferable for a CPU-basesion because it requires no precomputationhasd
a low computational complexity. While it requiresamy accesses to the voxel grid, array lookups en th
CPU are faster than on the GPU. Thus, the algorithnseful when the voxel grid and computationdael
in main memory on the CPU. In addition, the CPWads able to generate the depth-textures as eastiiyea
GPU can, making a line-drawing based algorithmgyeddle for the CPU. When the computation and the
voxel grid are performed on the GPU, however, thst of accessing the voxel texture is much higher.
Precomputing depth textures requires an additistead before rendering, but it reduces the compmurtaki
complexity of the occlusion check for each voxehtsingle texture check and comparison. Additignall
copying the depth textures from graphics memoryngon memory takes a significant amount of time. As
such, we use Bresenham's algorithm to check octlusithe CPU version of our pipeline, but precotegdu
depth textures when the processing is performati@GPU.

3  GPU Acceleration of the Rendering Process

In our implementation of the acceleration techngpeesented here, we use the Cg language under
shader model 4.0 in conjunction with OpenGL. Algums 1-4 show pseudo code for each of the main
shaders described in the following sections.
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drawMicrofacet(position : POSITION, cameralndicE©LOR) {
vertices[4] = calculateMicrofacetVertices(positierewpoint);
useCam = NULL,

for (int camNum = 0; camNum < 3 && useCam == NUldgmNum++)

{
C = getNextCamera();

Camera limages Segmertation Masks
dist = distance(position, C);
imageCoords[4] = projectPaints(vertices, C);

occlusions[4] = false;

Visual Hull ] if (all(depthTexture(imageCoords) < dist)) useCa®@;=

Reconstruction if ( useCam == NULL) useCam = getFirstCamera(caindizes);

[

calculateMicrofacet(vertices, useCam);

Algorithm 4: Final render geometry shader

Depth Texture
Ceneration Data Flow Overview
Figure 6 presents an overview of the
flow of data through the hardware
pth accelerated portion of the free-viewpoint
extures video system. Processing begins with
images and segmentation masks being
passed into the visual hull reconstruction
module, which produces a voxel
{ Final Render Pass } representation of the hull stored as a
texture. This is passed along with camera
parameters to the depth texture module
which produces depth textures for each
camera. Finally, the render module takes
these textures as parameters and produces
the rendered result. For performance
reasons, all intermediate results are
maintained in graphics memory.

Randered Scene

Fig. 6. Data-flow analysis of GPU-accelerated 3D
reconstruction and rendering.

Shader-Based Visual Hull Reconstruction

Visual hull reconstruction is implemented usingragyke fragment shader. Results are rendered djramxtl
a three-dimensional texture using a framebuffeecjFBO) one layer at a time. Each layer is reedisuch
that the fragment shader is run once per texel.

The fragment shader takes a number of input pasmeicluding intrinsic and extrinsic parameters of
each camera, the texture location of the voxel de@iomputed, and the captured camera images and
segmentation masks. Processing begins by transfgriine voxel position into the global coordinatsteyn.
Then, for each camera, this coordinate is projecteitd the camera's image plane using its calibratio
parameters. This process utilizes traditional tiegensional projection onto a two-dimensional pldout
also accounts for the distortion of the camera.|&he resulting coordinates are checked againdtdbeds
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Modeler(int3 indices) {
float3 position = CalculateGlobalPosition(indices)
int effective_camera = 0, actual_camera = 0;
bool empty = false;
for (int cam = 0; cam < numCameras && 'lempty; caing
camera C = getCamNum(cam);
float2 imageCoordinates = projectPoint(position, C)
if (imageCoordinates.isValid()){
color =Masks[cam].getPixel(imageCoordinates);
if (color == 0.0) empty = true;

createMicrofacet(float3 indices, camera C) {

if (lisVoxelFilled(indices)) return;

float3 position = calculateGlobalPosition(indices);
float dist = distance(position, C);
float2 imageCoords = projectPoint(position, C);

for (int vertex = 0; vertex < 4; vertex++) {
float2 corner = imageCoords + offset[vertex];
emitVertex(corner : POSITION, dist : COLOR);

} }

i}f (empty) return black;
else  return white;

It Algorithm 2: Depth texture geometry shader
Algorithm 1: 3D reconstruction fragment shader

of the image, and if they are within the boundsntithe shader performs a texture lookup on the
segmentation mask. If the voxel lies in the backgregion of the mask for any camera, the fragment
returns a black pixel signifying an empty voxelitlfies in the foreground for every camera, a wigixel is

the output signifying a solid voxel. The resultitexture represents the foreground objects in tlemesc
represented on a three dimensional voxel grid. dtlgm 1 provides pseudocode for this fragment shade

Depth Textures Using Microfacet Billboarding

Depth textures are generated by rendering all spacepying voxels as microfacets from the perspecti
of a given camera. Depth sorting ensures that trdymicrofacets that are closest to the camerabeill
displayed in the final texture. We use this proped our advantage by setting each microfacet'srcol
equivalent to its distance from the camera. Thiug,final texture will contain the distance to tHesest
microfacet at each texel.

To implement microfacet billboarding, our systentiei® primarily on the geometry shader because it
operates in camera (view) space. This means teatdhices of the microfacet are trivial to compus it
involves the addition of fixed offsets in tlxeandy directions. This ensures that the resulting patygall
always be facing the camera directly.

The geometry shader is responsible for taking cheaxel as a point and outputting the appropriate
polygon located at the voxel's center. After chegkihat the voxel must be rendered, the positiothef
voxel is calculated, and the distance between theslvand the camera is calculated. The center ®f th
microfacet is calculated by projecting the positafnthe voxel onto the camera's image plane. Frois t
position, four vertices are created adding fixetsais in thex andy directions. This ensures that the
resulting polygon is of a uniform size and orientedace the camera directly. We do not have tomgbahe
size of the microfacet based on the distance filoencemera because perspective projection is pezfbrm
automatically by hardware after the geometry shémlénansform the coordinates from camera spapexed
or image space. The color of the polygon is sééadistance calculated earlier. The process s ribgeated
for every camera used to record the scene. Algarttontains the pseudocode that describes thi®gso

Shader-Accderated Final Render

In order for the final image to be rendered, theram camera must be selected using the method in
section IID. First, the vertex shader selects the three kmaeras for texturing each voxel. The geometry
shader then checks for occlusions and rendersotked @s a microfacet.

The vertex shader begins by checking the voxeltexip ensure that the voxel needs to be rendtried.
does, the voxel's position in the global coordirggstem is calculated. Then, the vertex shadeuledés
®,m for each camera in the scene based on the forimutay. 3. This is used as the basis of a “vidipili
score” for each camera. The voxel's position is fi®jected onto the image plane of the cameradalcits
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coordinates. If the voxel lies outside of the vielgamage space, its visibility score is increated large
value to prevent its use.

Once the visibility score is computed for each canéhe vertex shader sorts the list of cameras and
picks the “best” three. This is accomplished by adified insertion sort. The vertex shader only cdites
enough memory for the top three camera indicesvasildility scores. Then, it loops through each ceame
inserting the camera into the output list onlytsfvisibility score is better (lower) than the thistored values
in the output arrays. For example, if the currearhera'’s visibility score is lower than all thraeheécomes
the “best” camera, and the former top two choicesraoved to the second and third choices. Once the
sorting algorithm has looped through each cameca,dhe output memory will store the best threearam

SelectCamera(voxelPosition) { drawMicrofacet(position : POSITION, cameralndic€OLOR) {
if (lisVoxelFilled()) return; vertices[4] = calculateMicrofacetVertices(positierewpoint);
visibilityScore[num_cameras]; useCam = NULL;
viewAngle = calculateViewAngle(voxelPosition, vieaipt);
for (int cam = 0; cam < num_cameras; cam++) { for (int camNum = 0; camNum < 3 && useCam == NUldgmNum++)

camera C = getCamera(cam); {
camAngle = calculateViewAngle(voxelPosition, C); C = getNextCamera();
visibilityScore[cam] = abs(camAngle — viewAngle); dist = distance(position, C);
imageCoords[4] = projectPoints(vertices, C);
imageCoords = projectPoint(voxelPosition, C); occlusions[4] = false;
if (limageCoords.isValid() ) if (all(depthTexture(imageCoords) < dist)) useCag;=

visibilityScore[cam] = inf;
if ( useCam == NULL) useCam = getFirstCamera(caindiees);
sort(visibilityScore);

float3 color = float3(visibilityScore[0], visibilitScore[1], calculateMicrofacet(vertices, useCam);
visibilityScore[2]); 1
retumn vertex(voxelPosition : POSITION, color : COR); Algorithm 4: Final render geometry shader

}
Algorithm 3: Final render vertex shader

While this is not the most efficient sorting algbm in the general case, it is simple to implen@mtthe
GPU and only requires enough memory to store teeeteoutput. In addition, there are typically I&san
ten cameras to sort and section IV reveals that Géthputation time is only a small portion of theemall
system execution time. As such, optimization of thorting process is unlikely to produce significan
performance benefits. Algorithm 3 shows the pseadedor this vertex shader.

The geometry shader then receives this list of casna@long with the voxel information. It applie$sets
to this position along the andy axes to generate the corner points of the micedfdte geometry shader
calculates the distanck between the first selected vertdx and the first camer@;. In order to see i), is
occluded, it is projected onto the image planeCofA simple texture lookup retrieves the depth textur
value,R, at this texel. IR < d;, then another solid voxel is closer@g at that texel thakJ;, meaningU; is
occluded forC,. The shader continues execution with the otherctedl cameras until the first one is found
that is not occluded. After computing the best aanfer all four vertices of the microfacet, the dba
chooses the best camera that can see all fouce®rtf all three cameras show occlusion for onmaore of
the vertices, then the first camera is selectedidiault. Finally, the selected camera's image &dus
texture the microfacet. This geometry shader irmd by the pseudocode in Algorithm 4.

4  Experimental Results

Configuration

We have implemented a video system composed of S dapturing video from seven calibrated and
synchronized |IEEE 1394 Point Grey Dragonfly 2 caasefThe captured area measures approximately
5.5mx5.5mx2.5m, with the cameras affixed on thd a@und the space. All cameras were orienteddo th
center of the space and captured video at a ra38 s at a resolution of 1024x768. Captured irnagere
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Fig. 7. Frames from “karate” dataset using arbytrar
viewpoints Fig. 8. Frames rendered from “nurses” dataset
using arbitrary viewpoints

streamed over a network to storage for offline pesing. Segmentation of captured images was peztbrm
in advance of modeling and rendering through thbrigue presented in [19].

All modeling and rendering functions were perforneeda PC with a Pentium IV Core 2 processor, 2 GB
of RAM and an NVIDIA 8800 GTS video card running Mlows XP with Service Pack 2 installed. Voxel
reconstruction was performed on a 300x300x200 wiitl a voxel spacing of 1 cmOutput images were
rendered at a resolution of 1024x768.

Runtime Perfor mance

Through harnessing the computational power of tR& Gsing the concepts presented in this paper, we
have managed to greatly improve the performanceuwfsystem. Table 1 presents the results of the
modeling and rendering steps performed on 300 fsanfighe “karate” dataset shown in Fig. 7. All tBne
shown represent the computed average time forgéesirame.

The system was also able to render the “nursegsdaishown in Fig 8. with proper texture selection
despite the large number of occlusions that corm fnaving two people in a scene. This shows that th
depth texture method of occlusion detection perfowell even in complex scenes. System performahce o
the GPU version was similar across both datasetgqdrformance statistics are not included for‘theses”
dataset due to the fact that a reliable benchmiattkeodataset has not been generated using thev€iRivn
at this time.

There are two main reasons for the differencesata dlow. First, the CPU version of microfacet
billboarding algorithm relies on the existence ot@mpact list of solid voxels. Because the modeling
function outputs an array of voxels that are batbd and empty, we must compress the voxel armayrdto
a list of the positions of only the filled voxela/e have determined through experimentation thatpcmimg
this “voxel compression” is more computationallffi@ént than requiring the CPU-based microfacet
billboarding algorithm to cull the empty voxels. Bgntrast, the GPU version of the system is ablekip
over empty voxels by terminating the shader's amty. Thus, voxel compression is not necessaryhier
GPU version of the system.
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Table 1. Performance Analysis of GPU based visual hull reconstruction and rendering

Step CPU Version GPU Version Improvement
(ms / frame) (ms / frame)

Modeling 23147.6819 179.7707 128.8x

W=z Voxel Compression 0.0793 - -

?, gh Depth Texture - 0.8881 -

S % Render 666.419 0.7737 861.34x

5 e~

« SUbtot 666.4983 1.6618 401.07x

Total 23814.1802 181.4325 131.26x

Secondly, the occlusion problem in camera seledfiffers between the CPU and GPU version. The
CPU version uses a three-dimensional version ofdream's line drawing algorithm which requires no
precomputation, while the GPU version uses precoetpdepth textures to minimize texture accesses.

Finally, the GPU version has the additional ovethe# transferring data to graphics memory before
executing and retrieving the results after the astanpon is complete. In Table 1, the time it takesransfer
all camera images and segmentation masks from maimory to graphics memory is included in the
modeling process. Similarly, the microfacet billtiag rendering step contains the time necessary to
retrieve the final rendered result from the franfédu

It is also important to note that the times listed able 1 do not include the time to load camenages
and segmentation masks into main memory from thmd Hesk, as Table 1 focuses on the time it takes to
compute the results. While the necessary time &al inese files from disk was not a concern with the
computation time of the CPU version, it has beamsistently larger than the computation time of GfeU
version. However, optimization of this processussale of the scope of this paper.

Despite the fact that the GPU is performing thecesame computations as the CPU, the GPU version
runs much faster for several reasons. First oftladl,stream processing model that the GPU usessatloe
computation of multiple voxels simultaneously witihdhe overhead or synchronization issues of multi-
threading. Additionally, the GPU is a specializedgessor that is optimized to do a number of opsrst
that are useful to our algorithm. For examplepélthe matrix operations involved in projecting @ onto
the image coordinates of a camera's image plane algle to be hardware-accelerated. Finally, the GPU
instruction set and drivers are finely tuned fcg tiipes of operations that our algorithm performugh as
texture lookups vector arithmetic, and distanceudation.

5 Conclusion

In this paper we have presented a practical mettfioopbtimizing free-viewpoint imaging systems on
consumer-level graphics hardware. The central quiribat the optimizations function on is the dieisiof
computation into discrete bits that the GPU proegds parallel. Additionally, by performing multepl
computations in series on the GPU, we have avaidading back intermediate results into main memory.
We proposed a system that adapts known algoritbrspécialized hardware to take advantage of tlestlat
advances in GPU hardware. Our evaluation showsttigabptimization is very effective in reproducing
visually accurate models at speeds much fasteral@iRU-based approach. With the continuing advainces
hardware and further work it is feasible that fetimaging systems will be able to utilize thesegevhased
techniques to recreate recorded scenes from n@mxpwints in near-real time.

Currently, image segmentation is performed on tR& @nd takes a significant amount of computation
time. Several methods for performing segmentatiorgaphics hardware have been proposed, but to our
knowledge few have been integrated into a singleware accelerated pipeline with modeling and
rendering algorithms [3][16][18]. Additionally, theamera selection algorithm can be improved upon to
minimize the impact of the areas of the model whepsduring switches from one camera to another.
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Blending of multiple camera images to produce tiefure for each microfacet could create seamless
transitions, but would have a negative impact afiopmance and could cause a blurring effect. Ouwming
these limitations would be a useful topic for ferthesearch.
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