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Abstract 

We present a method for optimizing the reconstruction and rendering of 3D objects from multiple images by utilizing 
the latest features of consumer-level graphics hardware based on shader model 4.0. We accelerate visual hull 
reconstruction by rewriting a shape-from-silhouette algorithm to execute on the GPU's parallel architecture. Rendering 
is optimized through the application of geometry shaders to generate billboarding microfacets textured with captured 
images. We also present a method for handling occlusion in the camera selection process that is optimized for execution 
on the GPU. Execution time is further improved by rendering intermediate results directly to texture to minimize the 
number of data transfers between graphics and main memory. We show our GPU based system to be significantly more 
efficient than a purely CPU-based approach, due to the parallel nature of the GPU, while maintaining graphical quality. 
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1 Introduction 

3D reconstruction and free view rendering has been an important topic in computer graphics and 
computer vision for many years. A variety of techniques have been proposed to solve this problem, with a 
wide range of quality and speed, and hardware requirements [1-4]. While early techniques were slow 
(partially due to limited hardware resources) and produced crude-looking results, recent advances in 
hardware complexity and computer vision algorithms have produced more realistic images from novel 
viewpoints in near-real time [2][5]. Most implementations fall under two categories: geometry-based or 
image-based. Geometry based solutions utilize traditional rendering techniques, and thus require a high level 
of detail to generate accurate surfaces. Image-based rendering attempts to solve this drawback by performing 
the rendering step using captured images. As such, it is not necessary to have an exact geometric model of 
the object being rendered [6]. A common technique for rendering such scenes is to create a rough model 
from the captured images and then render the model using image-based techniques. The most common way 
of creating this model from silhouette data is the shape-from-silhouette (SFS) technique [7-10]. Many vision 
systems have taken this approach [11-13] after Kanade et al. proposed "Virtualized Reality" as a new visual 
medium for manipulating and rendering pre-recorded scenes [4]. 

However, the SFS approach has the downside of high computational complexity due to the need to back-
project each point onto all silhouettes. This can be handled  by using clusters to process the real-time 
modeling and rendering as Matsuyama et al. and Ueda et al. chose to do, but this increases system 
costs[7][14]. 
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Meanwhile, advances in consumer level programmable graphics hardware have given researchers access 
to powerful hardware acceleration. Despite the fact that these GPUs (Graphics Processing Units) are 
programmable, their specialized nature and Concurrent Read Exclusive Write Single Instruction Multiple 
Data (CREW SIMD) programming model restricts the kinds of operations that can be performed efficiently. 
Despite these limitations, many researchers have begun to take advantage of the specialized nature of these 
processors to accelerate General-purpose Programming on the GPU (GPGPU) [15].  

A number of computer vision techniques already take advantage of GPGPU techniques to perform their 
computations [16-18]. However, the hardware industry is constantly adding new features to their hardware 
which means that such techniques soon are unable to utilize the full potential of the latest graphics hardware. 
Recently, the emergence of geometry shaders and the shader model 4.0 has added a new level of power and 
flexibility that most GPGPU techniques have not yet taken advantage of. 

In this paper we present a method for accelerating the process of reconstructing and rendering a visual 
hull from multiple segmented camera images using the latest features of widely available consumer-level 
graphics hardware. While we build upon a number of established methods such as voxel carving using 
shape-from-silhouette, we also integrate a novel method for solving camera selection on the GPU using 
depth textures. Additionally, the system we present here provides full hardware-acceleration for all modeling 
and rendering tasks, and avoids swapping intermediate results between main memory and graphics memory 
by rendering directly to texture memory. The result of this work is a GPU- based approach to the 
reconstruction and rendering stages of the imaging system, which we show to be more efficient than a CPU-
based approach. 

In section II we present an overview of a CPU based free-viewpoint system that takes advantage of 
powerful techniques such as shape-from-silhouette for 3D reconstruction, and microfacet billboarding for 
rendering. In section III we optimize these techniques using vertex, geometry and fragment shaders under 
shader model 4.0. Finally, we quantify the impact that these optimizations have had on system performance 
and accuracy in section IV. Section V wraps up with conclusions and an overview of future work. 

2 3D Reconstruction and Free-Viewpoint Rendering 

System Overview 

Our free-viewpoint video system takes images from standard video cameras and constructs a 3D model of 
the objects contained within, from which it renders video of the scene from virtual cameras from novel 
viewpoints. This is accomplished by segmenting the captured images to extract foreground silhouettes and 
using these silhouettes to construct a voxel-based model of the object. The original images are then used to 
texture this model during the rendering process. 

The free-viewpoint system uses a series of “environmental” cameras oriented towards the center of the 
capture space (Fig. 1).  The cameras are off-the-shelf cameras permanently affixed to the project space. Prior 
to recording, each camera's intrinsic parameters (distortion coefficients, etc) and extrinsic parameters 
(position and orientation) are calculated using the calibration method presented in [1]. A robust segmentation 
algorithm presented in [19] calculates the foreground of each image and generates an image mask (hereafter 
referred to as a segmentation mask). 

After the segmentation masks have been computed (as seen in the top-right corner of Fig. 1), the system 
reconstructs the visual hull based on a Shape-From-Silhouette (SFS) algorithm which carves the space using 
the segmentation masks and precomputed camera calibration parameters [19]. The space is modeled as a 
regular voxel grid, with the value of each voxel indicating the presence of a foreground object. The voxel 
model is carved by projecting the silhouette into the voxel space and culling any voxels that lie in the 
background region in the 3D modeling step presented in Fig. 1. Once the model is computed, we employ a 
version of the microfacet billboarding technique originally presented in [20] to render the scene from any 
viewpoint.  The resulting rendered images are textured by mapping the individual microfacets to the images 
captured by the cameras. We have found through experimentation that correct camera selection for each 
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microfacet is critical to the perceived quality of the final render. Figure 1 presents a graphical overview of 
the system. 

Visual Hull Reconstruction 

Visual hull reconstruction is the process of computing a 3D model of a scene from image data [21]. Our 
system does this with a 'shape-from-silhouette' method on a voxel grid that occupies the target space.  The 
resulting hull is formed by projecting the silhouettes obtained from the segmentation masks into the voxel 
grid.  Any voxel contained within the intersection of these projections is considered “solid” and is included 
in the visual hull.  However, if a voxel lies outside of any of the silhouettes, it is culled, and no further 
processing takes place. 

For example, define a system with N cameras labeled Cm (m=1,...,N), silhouettes Sm, and projection 
matrices Pm.  Now, assume that a point p lies within a voxel Vn.  If Vn lies within the volume occupied by the 
hull, then p must lie within Sm when projected onto the image plane of Cm, for every m=1,...,N. If p projects 
onto the background area of Sm for any m=1,...,N, then it must lie outside of the object and is culled. Thus, we 
can calculate the visual hull of an object in this manner based solely on silhouette information and camera 
calibration parameters.  

Rendering 

Many techniques exist for rendering voxel-based data, each with its strengths and weaknesses. One 
approach is to render each voxel as a cube [22].  This approach is appealing because of its low computational 
complexity.  However, this approach produces an image that appears unnatural for organic forms.  Figure 
2(a) shows the results of this rendering method. 

Another popular method of rendering voxel-based data is the marching cubes algorithm originally 
published in [23].  Since each vertex must lie within or outside of the surface being modeled, there are a 
finite number of possible configurations for a given cube's geometry. Lookup tables and vertex interpolation 
allow the appropriate polygons to be generated quickly for each cube. The resulting mesh is more detailed, 
but has a very high polygon count as seen in Fig. 2(b).   

 

Fig. 1. Flow diagram of free-view imaging system. 
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Microfacet billboarding, by contrast, generates a single polygon for each voxel that defines the model 
[24].  The microfacet is defined as, “a slice which intersects the center of the voxel and is vertical to the 
viewing direction” (see Fig. 2(c)) [20].  Thus, as the virtual camera is rotated around the model, the normals 
of each rendered microfacet are adjusted to be parallel to the virtual camera's view vector. Each polygon 
generated is sized to match the size of the voxel it represents.  In a regular voxel grid, each side of the facet 
must be at least three times the size of the voxel length. 

This ensures that the voxel will cover enough area in the final image to prevent gaps between facets 
regardless of viewing angle.  

Through experimentation, we have determined that the results of the microfacet billboarding technique 
form the exact same shape as the results of the marching cubes algorithm with significantly less computation 
required. We believe this is due to the nature of the voxel representation of the visual hull. The disadvantage 
to microfacet billboarding lies in the fact that it ignores the surface properties of the model being rendered, 
specifically the normals. Due to the fact that we are using captured images as the basis for texturing our 
objects, we do not need to do any lighting calculations. As a result, this limitation does not have a significant 
impact on the quality of our results. 

Camera Selection and Texturing 

Our system is based on image-based rendering, as it uses real images to produce results that do not require 
a high level of geometric complexity [2].  Because of occlusion and changes in a surface's appearance due to 
lighting conditions and viewing angle, great care must be taken to select the appropriate camera to use as a 
texture for each microfacet. Improper camera selection can lead to unrealistic images due to many factors, 
including distortion, clipping and occlusion. 

 

 (a) cube-based render   (b) marching cubes render (c) microfacet billboarding render 

Fig. 2. Three methods for rendering a voxel-based mesh 

 

Fig. 3. Calculation of viewing angles. 
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Our system implements a system by which every non-empty voxel ranks the environmental cameras 
based on several criteria.  This is accomplished by computing a “visibility score” for each camera and then 
sorting the cameras based on this value.  

The first criterion considered is the angle at which the camera is viewing the voxel. Given a physical 
camera Cm, virtual viewpoint Pv, and a voxel Vn, our system computes Θn,m. This angle represents the 
difference in the viewing angles between the physical and virtual camera. It is computed by taking the 
inverse cosine of the dot product of the vectors VnPv and VnCm (shown in Fig. 3). Θn,m is used as the initial 
visibility score for each camera Cm in the scene so that the camera with the smallest Θn,m can be selected to 
texture the voxel. Additionally, the texture coordinates of the voxel are computed for each camera. If the 
texture coordinates lie outside of the captured image, the visibility score is set to an arbitrarily high value to 
prevent the use of that camera.  

The primary problem with this method, however, is that it ignores the possibility of occlusion. When non-
trivial objects are recorded by the proposed system, the model generated often occludes itself in one or 
several of the captured camera images. For example, when the person being recorded held their arm up 
between one of the cameras and their body, the image of their arm would be used to texture not only the arm 
itself, but also part of their body. For example, Fig. 4 demonstrates this problem. Figure 4(a) displays the 
scene rendered from the camera's angle, while Fig. 4(b) shows the same scene rendered from a slightly 
higher angle. Notice that the texture of the hand is rendered on the chest as well. Proper segmentation and 
occlusion detection can help eliminate this problem. 

 

Given a viewpoint Pv, a voxel Vn is considered occluded if there exists a voxel W, such that W lies directly 
between Vn and Pv. Thus, one method of checking for occlusion is to use a three-dimensional version of 
Bresenham's line drawing algorithm to obtain the coordinates of every voxel in between Vn and Pv [25]. If 
any of the voxels checked is solid, then Vn is occluded, and another camera must be chosen. Due to the fact 
that the line drawing algorithm works in pure integer math, this algorithm runs quickly, but still requires 
many accesses into the voxel model.  

   

(a)Perspective from camera  (b) Higher angle 

Fig. 4. Occlusion problem example. 
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Alternatively, it is possible to avoid this many lookups into the voxel model by doing some 
precomputation. Before the model is rendered from the perspective of the virtual viewpoint, it is rendered 
from the perspective of each camera. 

For a given camera Cm, if every voxel Vn is rendered as a microfacet to a depth buffer using the 
perspective of camera Cm, a depth texture Td is generated. Given a texel t in Td, the value of t represents the 
distance from Cm to the closest microfacet along the ray projected from Cm through t. Example results of the 
depth textures generated by this method are shown in Fig. 5. Note that the intensity of each pixel represents 
its depth; the lighter parts of the images are further away than the darker parts. 

Thus, when rendering, it is possible to use these depth textures to check for occlusion. First, a distance dvc 
is calculated between the voxel, Vn, and the camera Cm. Then, the vertices of the microfacet are projected 
onto the image plane of Cm, resulting in a set of texture coordinates. The distance from Cm to the closest 
microfacet at each of the corners of these texture coordinates, defined as d1-d4 is calculated by performing a 
texture lookup into the depth texture for Cm at the calculated texture coordinates. If dn > dvc for any n={1,4}, 
then Vn is at least partially occluded by another voxel. Otherwise, the texture coordinates are used to texture 
Vn with the image captured by Cm. If Vn is occluded, then the algorithm continues to check the remaining 
cameras based on their priority until one is found that is not occluded. 

Each approach has its strengths and weaknesses, and thus is applicable in different situations. Using 
Bresenham's algorithm is preferable for a CPU-based version because it requires no precomputation and has 
a low computational complexity. While it requires many accesses to the voxel grid, array lookups on the 
CPU are faster than on the GPU. Thus, the algorithm is useful when the voxel grid and computation is done 
in main memory on the CPU. In addition, the CPU is not able to generate the depth-textures as easily as the 
GPU can, making a line-drawing based algorithm preferable for the CPU. When the computation and the 
voxel grid are performed on the GPU, however, the cost of accessing the voxel texture is much higher. 
Precomputing depth textures requires an additional step before rendering, but it reduces the computational 
complexity of the occlusion check for each voxel to a single texture check and comparison. Additionally, 
copying the depth textures from graphics memory to main memory takes a significant amount of time. As 
such, we use Bresenham's algorithm to check occlusion in the CPU version of our pipeline, but precomputed 
depth textures when the processing is performed on the GPU.  

3 GPU Acceleration of the Rendering Process 

In our implementation of the acceleration techniques presented here, we use the Cg language under 
shader model 4.0 in conjunction with OpenGL. Algorithms 1-4 show pseudo code for each of the main 
shaders described in the following sections. 

 

 

 

Fig. 5 Sample depth textures 
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Data Flow Overview 

Figure 6 presents an overview of the 
flow of data through the hardware 
accelerated portion of the free-viewpoint 
video system. Processing begins with 
images and segmentation masks being 
passed into the visual hull reconstruction 
module, which produces a voxel 
representation of the hull stored as a 
texture. This is passed along with camera 
parameters to the depth texture module 
which produces depth textures for each 
camera. Finally, the render module takes 
these textures as parameters and produces 
the rendered result. For performance 
reasons, all intermediate results are 
maintained in graphics memory.  

 

Shader-Based Visual Hull Reconstruction 

Visual hull reconstruction is implemented using a single fragment shader. Results are rendered directly to 
a three-dimensional texture using a framebuffer object (FBO) one layer at a time. Each layer is rendered such 
that the fragment shader is run once per texel.  

The fragment shader takes a number of input parameters including intrinsic and extrinsic parameters of 
each camera, the texture location of the voxel being computed, and the captured camera images and 
segmentation masks. Processing begins by transforming the voxel position into the global coordinate system. 
Then, for each camera, this coordinate is projected onto the camera's image plane using its calibration 
parameters. This process utilizes traditional three-dimensional projection onto a two-dimensional plane but 
also accounts for the distortion of the camera lens. The resulting coordinates are checked against the bounds 

 

Fig. 6. Data-flow analysis of GPU-accelerated 3D 
reconstruction and rendering. 

drawMicrofacet(position : POSITION, cameraIndices: COLOR) {
vertices[4] = calculateMicrofacetVertices(position, viewpoint);
useCam = NULL;

for (int camNum = 0; camNum < 3 && useCam == NULL; camNum++)   
{

C = getNextCamera();
dist = distance(position, C);
imageCoords[4] = projectPoints(vertices, C);
occlusions[4] = false;
if (all(depthTexture(imageCoords) < dist)) useCam = C;

}
if ( useCam == NULL) useCam = getFirstCamera(cameraIndices);

calculateMicrofacet(vertices, useCam);
}

Algorithm 4: Final render geometry shader 
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of the image, and if they are within the bounds, then the shader performs a texture lookup on the 
segmentation mask. If the voxel lies in the background region of the mask for any camera, the fragment 
returns a black pixel signifying an empty voxel. If it lies in the foreground for every camera, a white pixel is 
the output signifying a solid voxel. The resulting texture represents the foreground objects in the scene 
represented on a three dimensional voxel grid. Algorithm 1 provides pseudocode for this fragment shader. 

Depth Textures Using Microfacet Billboarding 

Depth textures are generated by rendering all space-occupying voxels as microfacets from the perspective 
of a given camera. Depth sorting ensures that only the microfacets that are closest to the camera will be 
displayed in the final texture. We use this property to our advantage by setting each microfacet's color 
equivalent to its distance from the camera. Thus, the final texture will contain the distance to the closest 
microfacet at each texel.  

To implement microfacet billboarding, our system relies primarily on the geometry shader because it 
operates in camera (view) space. This means that the vertices of the microfacet are trivial to compute, as it 
involves the addition of fixed offsets in the x and y directions. This ensures that the resulting polygon will 
always be facing the camera directly.  

The geometry shader is responsible for taking in each voxel as a point and outputting the appropriate 
polygon located at the voxel's center. After checking that the voxel must be rendered, the position of the 
voxel is calculated, and the distance between the voxel and the camera is calculated. The center of the 
microfacet is calculated by projecting the position of the voxel onto the camera's image plane. From this 
position, four vertices are created adding fixed offsets in the x and y directions. This ensures that the 
resulting polygon is of a uniform size and oriented to face the camera directly. We do not have to change the 
size of the microfacet based on the distance from the camera because perspective projection is performed 
automatically by hardware after the geometry shader to transform the coordinates from camera space to pixel 
or image space. The color of the polygon is set to the distance calculated earlier. The process is then repeated 
for every camera used to record the scene. Algorithm 2 contains the pseudocode that describes this process. 

Shader-Accelerated Final Render 

In order for the final image to be rendered, the correct camera must be selected using the method in 
section II.D. First, the vertex shader selects the three best cameras for texturing each voxel. The geometry 
shader then checks for occlusions and renders the voxel as a microfacet. 

The vertex shader begins by checking the voxel texture to ensure that the voxel needs to be rendered. If it 
does, the voxel's position in the global coordinate system is calculated. Then, the vertex shader calculates  
Θn,m for each camera in the scene based on the formula in Fig. 3. This is used as the basis of a “visibility 
score” for each camera. The voxel's position is then projected onto the image plane of the camera to check its 

Modeler(int3 indices) {
float3 position  = CalculateGlobalPosition(indices);
int effective_camera = 0, actual_camera = 0;
bool empty = false;

 for (int cam = 0; cam < numCameras && !empty; cam++) {
camera C = getCamNum(cam);
float2 imageCoordinates = projectPoint(position, C);
if (imageCoordinates.isValid()){

color =Masks[cam].getPixel(imageCoordinates);
if (color == 0.0) empty = true;

}
}
if (empty)  return black;
else return white;

}

Algorithm 1: 3D reconstruction fragment shader 

 

createMicrofacet(float3 indices, camera C) {
if (!isVoxelFilled(indices)) return;

float3 position = calculateGlobalPosition(indices);
float dist = distance(position, C);
float2 imageCoords = projectPoint(position, C);

for (int vertex = 0; vertex < 4; vertex++) {
float2 corner = imageCoords + offset[vertex];
emitVertex(corner : POSITION, dist : COLOR);

}
}

Algorithm 2: Depth texture geometry shader 
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coordinates. If the voxel lies outside of the viewable image space, its visibility score is increased to a large 
value to prevent its use. 

Once the visibility score is computed for each camera, the vertex shader sorts the list of cameras and 
picks the “best” three. This is accomplished by a modified insertion sort. The vertex shader only allocates 
enough memory for the top three camera indices and visibility scores. Then, it loops through each camera, 
inserting the camera into the output list only if its visibility score is better (lower) than the three stored values 
in the output arrays. For example, if the current camera's visibility score is lower than all three, it becomes 
the “best” camera, and the former top two choices are moved to the second and third choices. Once the 
sorting algorithm has looped through each camera once, the output memory will store the best three cameras. 

While this is not the most efficient sorting algorithm in the general case, it is simple to implement on the 
GPU and only requires enough memory to store the desired output. In addition, there are typically less than 
ten cameras to sort and section IV reveals that GPU computation time is only a small portion of the overall 
system execution time. As such, optimization of this sorting process is unlikely to produce significant 
performance benefits. Algorithm 3 shows the pseudocode for this vertex shader. 

 

The geometry shader then receives this list of cameras along with the voxel information. It applies offsets 
to this position along the x and y axes to generate the corner points of the microfacet. The geometry shader 
calculates the distance d1 between the first selected vertex U1 and the first camera C1. In order to see if U1 is 
occluded, it is projected onto the image plane of C1. A simple texture lookup retrieves the depth texture 
value, R, at this texel. If R < d1, then another solid voxel is closer to C1 at that texel than U1, meaning U1 is 
occluded for C1. The shader continues execution with the other selected cameras until the first one is found 
that is not occluded. After computing the best camera for all four vertices of the microfacet, the shader 
chooses the best camera that can see all four vertices. If all three cameras show occlusion for one or more of 
the vertices, then the first camera is selected by default. Finally, the selected camera's image is used to 
texture the microfacet. This geometry shader is outlined by the pseudocode in Algorithm 4. 

4 Experimental Results 

Configuration 

We have implemented a video system composed of 3 PCs capturing video from seven calibrated and 
synchronized IEEE 1394 Point Grey Dragonfly 2 cameras. The captured area measures approximately 
5.5m×5.5m×2.5m, with the cameras affixed on the wall around the space. All cameras were oriented to the 
center of the space and captured video at a rate of 30 fps at a resolution of 1024×768. Captured images were 

selectCamera(voxelPosition) {
if (!isVoxelFilled()) return;
visibilityScore[num_cameras];
viewAngle = calculateViewAngle(voxelPosition, viewpoint);
for (int cam = 0; cam < num_cameras; cam++) {

camera C = getCamera(cam);
camAngle = calculateViewAngle(voxelPosition, C);
visibilityScore[cam] = abs(camAngle – viewAngle);

imageCoords = projectPoint(voxelPosition, C);
if (!imageCoords.isValid() )

visibilityScore[cam] = inf;
}
sort(visibilityScore);
float3 color = float3(visibilityScore[0], visibilityScore[1], 

visibilityScore[2]);
return vertex(voxelPosition : POSITION, color : COLOR);

}

Algorithm 3: Final render vertex shader 

 

drawMicrofacet(position : POSITION, cameraIndices: COLOR) {
vertices[4] = calculateMicrofacetVertices(position, viewpoint);
useCam = NULL;

for (int camNum = 0; camNum < 3 && useCam == NULL; camNum++)   
{

C = getNextCamera();
dist = distance(position, C);
imageCoords[4] = projectPoints(vertices, C);
occlusions[4] = false;
if (all(depthTexture(imageCoords) < dist)) useCam = C;

}
if ( useCam == NULL) useCam = getFirstCamera(cameraIndices);

calculateMicrofacet(vertices, useCam);
}

Algorithm 4: Final render geometry shader 

 



130        Neal Orman et al. / Electronic Letters on Computer Vision and Image Analysis 7(2): 120-133, 2008 

 

streamed over a network to storage for offline processing. Segmentation of captured images was performed 
in advance of modeling and rendering through the technique presented in [19].  

All modeling and rendering functions were performed on a PC with a Pentium IV Core 2 processor, 2 GB 
of RAM and an NVIDIA 8800 GTS video card running Windows XP with Service Pack 2 installed. Voxel 
reconstruction was performed on a 300×300×200 grid with a voxel spacing of 1 cm3. Output images were 
rendered at a resolution of 1024×768.  

Runtime Performance 

Through harnessing the computational power of the GPU using the concepts presented in this paper, we 
have managed to greatly improve the performance of our system. Table 1 presents the results of the 
modeling and rendering steps performed on 300 frames of the “karate” dataset shown in Fig. 7. All times 
shown represent the computed average time for a single frame.  

The system was also able to render the “nurses” dataset shown in Fig 8. with proper texture selection 
despite the large number of occlusions that come from having two people in a scene. This shows that the 
depth texture method of occlusion detection performs well even in complex scenes. System performance of 
the GPU version was similar across both datasets, but performance statistics are not included for the “nurses” 
dataset due to the fact that a reliable benchmark of the dataset has not been generated using the CPU version 
at this time.  

There are two main reasons for the differences in data flow. First, the CPU version of microfacet 
billboarding algorithm relies on the existence of a compact list of solid voxels. Because the modeling 
function outputs an array of voxels that are both filled and empty, we must compress the voxel array down to 
a list of the positions of only the filled voxels. We have determined through experimentation that computing 
this “voxel compression” is more computationally efficient than requiring the CPU-based microfacet 
billboarding algorithm to cull the empty voxels. By contrast, the GPU version of the system is able to skip 
over empty voxels by terminating the shader's code early. Thus, voxel compression is not necessary for the 
GPU version of the system. 

 

Fig. 7. Frames from “karate” dataset using arbitrary 
viewpoints 

 

 

Fig. 8. Frames rendered from “nurses” dataset 
using arbitrary viewpoints 
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Secondly, the occlusion problem in camera selection differs between the CPU and GPU version. The 
CPU version uses a three-dimensional version of Bresenham's line drawing algorithm which requires no 
precomputation, while the GPU version uses precomputed depth textures to minimize texture accesses.  

Finally, the GPU version has the additional overhead of transferring data to graphics memory before 
executing and retrieving the results after the computation is complete. In Table 1, the time it takes to transfer 
all camera images and segmentation masks from main memory to graphics memory is included in the 
modeling process. Similarly, the microfacet billboarding rendering step contains the time necessary to 
retrieve the final rendered result from the framebuffer.  

It is also important to note that the times listed in Table 1 do not include the time to load camera images 
and segmentation masks into main memory from the hard disk, as Table 1 focuses on the time it takes to 
compute the results. While the necessary time to load these files from disk was not a concern with the 
computation time of the CPU version, it has been consistently larger than the computation time of the GPU 
version. However, optimization of this process is outside of the scope of this paper. 

Despite the fact that the GPU is performing the exact same computations as the CPU, the GPU version 
runs much faster for several reasons. First of all, the stream processing model that the GPU uses allows the 
computation of multiple voxels simultaneously without the overhead or synchronization issues of multi-
threading. Additionally, the GPU is a specialized processor that is optimized to do a number of operations 
that are useful to our algorithm. For example, all of the matrix operations involved in projecting a point onto 
the image coordinates of a camera's image plane were able to be hardware-accelerated. Finally, the GPU 
instruction set and drivers are finely tuned for the types of operations that our algorithm performs, such as 
texture lookups vector arithmetic, and distance calculation.  

5 Conclusion 

In this paper we have presented a practical method of optimizing free-viewpoint imaging systems on 
consumer-level graphics hardware. The central concept that the optimizations function on is the division of 
computation into discrete bits that the GPU processes in parallel. Additionally, by performing multiple 
computations in series on the GPU, we have avoided reading back intermediate results into main memory. 
We proposed a system that adapts known algorithms to specialized hardware to take advantage of the latest 
advances in GPU hardware. Our evaluation shows that the optimization is very effective in reproducing 
visually accurate models at speeds much faster than a CPU-based approach. With the continuing advances in 
hardware and further work it is feasible that future imaging systems will be able to utilize these image-based 
techniques to recreate recorded scenes from novel viewpoints in near-real time. 

Currently, image segmentation is performed on the CPU and takes a significant amount of computation 
time. Several methods for performing segmentation on graphics hardware have been proposed, but to our 
knowledge few have been integrated into a single hardware accelerated pipeline with modeling and 
rendering algorithms [3][16][18]. Additionally, the camera selection algorithm can be improved upon to 
minimize the impact of the areas of the model where texturing switches from one camera to another. 

Table 1. Performance Analysis of GPU based visual hull reconstruction and rendering 
 

Step CPU Version 
(ms / frame) 

GPU Version 
(ms / frame) 

Improvement 

Modeling 23147.6819 179.7707 128.8x 

Voxel Compression 0.0793 - - 

Depth Texture - 0.8881 - 

Render 666.419 0.7737 861.34x 

M
icro

facet 
B

illb
o

ard
in

g
 SUbtot 666.4983 1.6618 401.07x 

Total 23814.1802 181.4325 131.26x 
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Blending of multiple camera images to produce the texture for each microfacet could create seamless 
transitions, but would have a negative impact on performance and could cause a blurring effect. Overcoming 
these limitations would be a useful topic for further research. 
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