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Abstract 
 

This paper presents a portable system and method for 
recognizing the 26 hand shapes of the American Sign 
Language alphabet, using a novel glove-like device. Two 
additional signs, 'space', and 'enter' are added to the 
alphabet to allow the user to form words or phrases and 
send them to a speech synthesizer. Since the hand shape 
for a letter varies from one signer to another, this is a 28-
class pattern recognition system. A three-level 
hierarchical classifier divides the problem into 
"dispatchers" and "recognizers." After reducing pattern 
dimension from ten to three, the projection of class 
distributions onto horizontal planes makes it possible to 
apply simple linear discrimination in 2D, and Bayes' Rule 
in those cases where classes had features with overlapped 
distributions. Twenty-one out of 26 letters were 
recognized with 100% accuracy; the worst case, letter U, 
achieved 78%. 
 
1. Introduction 
 

Hand shape and gesture recognition has been an active 
area of investigation during the past decade. Beyond the 
quest for a more 'natural' interaction between humans and 
computers, there are many interesting application in 
robotics, virtual reality, tele-manipulation, tele-presence, 
and sign language translation. According to American 
Sign Language (ASL) linguist William Stokoe [13] and 
the ASL Dictionary [1], a sign is described in terms of 
four components: hand shape, location in relation to the 
body, movement of the hands, and orientation of the 
palms. Hand shape (position of the fingers with respect to 
the palm), the static component of the sign, along with the 
orientation of the palm, forms what is known as posture. 
A set of 26 unique distinguishable postures makes up the 
alphabet in ASL used to spell names or uncommon words 
that are not well defined in the dictionary. 

While some applications, like image manipulation and 
virtual reality, allow the researcher to select a convenient 
set of postures which are easy to differentiate, such as 
point, rotate, track, [22] fist, index, victory, [19] or the 
"NASA Postures" [2], the well-established ASL alphabet 

contains some signs which are very similar to each other. 
For example, the letters 'A', 'M', 'N', 'S', and 'T' are signed 
with a closed fist (see [1]). The amount of finger 
occlusion is high and, at first glance, these five letters can 
appear to be the same posture. This makes it very hard to 
use vision-based systems in the recognition task. 
Nevertheless Uras and Verri [15] tried to recognize the 
shapes using the "size function" concept on a Sun Sparc 
Station with some success. Lamar [7] achieved a 93% 
recognition rate in the easiest (most recognizable letter), 
and a 70% recognition rate in the most-difficult case (the 
letter 'C'), using colored gloves and neural networks. 
Starner, Weaver, and Pentland [12] implemented a 
successful gesture recognizer with as high as 98% 
accuracy, but they abandoned the idea of recognizing 
hand postures and captured only hand area, instead. 

Despite instrumented gloves being described as 
'cumbersome,' 'restrictive', and 'unnatural' for those who 
prefer vision-based systems, they have been more 
successful recognizing postures. In 1983, Grimes [4] was 
granted a patent of his Data Entry Glove, which he used 
to enter ASCII characters to a computer using switches 
and other sensors sewn to the glove. Kramer [6] used his 
patented CyberGlove, along with a look-up table, to 
recognize the 26 letters of the alphabet. Erenshteyn [3] 
also used the CyberGlove  and a method involving coded 
output, such as Hamming, Golay, and other hybrid codes. 
The VPL Data Glove invented by Zimmerman [21] has 
been used to recognize postures in different sign 
languages. For example, Liang [8] solved a set of 51 basic 
postures of Taiwanese Sign Language using probability 
models, and Waldron [16] was able to recognize 36 ASL 
postures by solving a two-stage neural network. 

In a search of more-affordable options (the 
CyberGlove costs between US$ 9,800 and US$ 14,500, 
depending on the number of sensors), Kadous [17] 
proposed a system for Australian Sign Language based on 
Mattel's Power Glove, but the glove could not be used to 
recognize the alphabet hand shapes because of a lack of 
sensors on the pinky finger. Pister [9] used accelerometers 
at the fingertips to implement a tracking system for 
pointing purposes. This glove has not been applied to 
fingerspelling. Thorough reviews of the use of gloves for 
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gesture recognition can be found in papers by Sturman 
[14] and Watson [18]. 

The system proposed in this paper addresses the issues 
of portability and affordability. We use an inexpensive 
micro controller and a set of five MEMS (Micro Electro 
Mechanical System) dual-axis accelerometers 
manufactured by Analog Devices, without compromising 
accuracy. Our device, called The Accele Glove [23], is 
different from previous approaches in that it does not 
require an external tracker system to identify hand 
orientation, and is therefore capable of identifying 
postures that others cannot. First, data are collected and 
analyzed 'off line' on a PC. The features we extract, after 
applying a simple transformation on raw data, allow easy 
visualization of classes as vectors in the posture space. 
After the algorithm is tested, a three level hierarchical 
classifier, implemented as a sequence of 'if-then-else' 
statements in the micro controller, executes the algorithm 
in real time. 
 
2. The System 
 

The key component of the system is the Accele Glove, 
which provides a measurement of finger position with 
respect to the gravitational vector. Figure 1 shows how all 
components are interconnected.  

 

Figure 1. Block Diagram. The micro controller reads 
the Accele Glove and sends the letter's ASCII code to 
the speech synth. The PC was used to analyze data 

off-line. 

By using the digital output of the MEMS dual-axis 
accelerometers attached to fingers, no A/D converter is 
necessary, and a single-chip micro controller can be used . 
The PC is used for data analysis and algorithm training, 
and disconnected after that. When programmed with the 
trained algorithm, the micro controller feeds the voice 
synthesizer (V68000) with the ASCII of the recognized 
letter, so the signer actually 'speaks out' words and short 
sentences. 
 

2.1 Sensors Location. 
 

The human hand has 17 active joints above the wrist: 
three on each of the index, middle, ring, and pinky 
fingers; three on the thumb; and the pitch and yaw on the 
wrist (rolling is generated in the elbow). The number of 
joints needed to distinguish between signs is a crucial 
factor; if the system, vision-based or instrumented, fails in 
acquiring enough information, ambiguity (the same set of 
signals for different postures) will reduce the recognition 
rate to unacceptable levels. Attaching five dual-axis 
sensors on the proximal inter phalangeal (PIP, or middle) 
joints of the fingers and the Inter phalangeal (distal) joint 
of the thumb, eliminates ambiguity for the 26 postures of 
the ASL alphabet. Location of  the axes is shown in 
Figure2 
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2.2 Accelerometers. 
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2.3 Signals. 
 

Position is read measuring the duty cycle of a train of 
pulses of 1kHz. When a sensor is in its horizontal 
position, the duty cycle is 50%. When it is tilted from 
+90° to –90° the duty cycle varies from 37.5% (.375 
msec) to 62.5% (.625 msec), respectively. The micro 
controller monitors the output, and measures how long the 
output remains high (pulse width), using a 10 
microsecond clock counter, meaning a range from 
(375/10) = 37 counts for 90° to a maximum of (625 /10) = 
62 counts for -90°, a span of 25 counts. Nonlinearity and 
saturation, two characteristics of this mechanical device, 
reduce the usable range to ±80°. Therefore, the resolution 
is (160° / 25 counts) = 6.5° per count. The error of any 
measure was found to be ±1 bit, or ±6.5°, which is 
slightly larger than the error of 5° reported by Wise [20], 
and smaller than the mean of 11° reported by Quam [10] 
for the VPL DataGlove. The CyberGlove can be adjusted 
to measure different ranges of flexion using 8 bits, but the 
accuracy is reduced, due to problems of repeatability, to 
15° according to Kessler et al. [5]. 
 
2.4 Data Collection. 
 

Ten pulse widths are read sequentially by the micro 
controller, beginning with the X-axis followed by the Y-
axis, thumb first. It takes 10 milliseconds to gather all 
finger positions. During the analysis stage of the project, 
position is sent as a package of 10 bytes through the serial 
port to a PC and saved as a row in a text file. 

Five volunteers (three females, two males between 26 
and 36 years old) were asked to wear the prototype shown 
in Figure 1 and to sign every letter of the alphabet ten 
times. Letters 'J' and 'Z' are sampled only at their final 
position. This allowed us to capture the differences and 
similarities among signers in twenty-six files with 10x10 
matrices. 
 
3. Feature Selection and Extraction. 
 

The set of 10 measurements, two axes per finger, 
represents a vector of raw data. As we indicated in the 
introduction, different representations have been tested in 
the literature: Uras represented postures as contours, 
Lamar extracted the eigenvalues and eigenvectors from 
images. Kramer did not try feature extraction, but worked 
with the vector of raw data, as did Shahabi [11]. In his 
paper, he claims to be the first to use a decision tree for 
the analysis of haptic data (taken from a CyberGlove). He 
also claims to be the first to use Bayesian Classifier for 
raw haptic data analysis, and to use and compare Back 
Propagation Neural Networks with Bayesian Decision 
Tree for the recognition of static data. Contrary to his 
results, where he concludes that Decision trees are not 

suited to the task of sign recognition, we state and prove 
the contrary. 

The goal is to extract a set of features that represents a 
posture without ambiguity in "posture space". If Stokoe 
[13] and Costello [1] already defined posture as being 
composed of hand shape and orientation, and that these 
two features are sufficient to represent any letter without 
ambiguity, then the feature extraction process has to 
recover these two components from raw data. Our Accele 
Glove is different from all other devices we have found, 
in that it is able to measure not only finger flexion (hand 
shape), but hand orientation (with respect to the 
gravitational vector) without the need for any other 
external sensor like a magnetic tracker. or Mattel's 
ultrasonic trackers [8], [16], [17].   

We define a vector p in posture space, 
p = [hand shape,  palm orientation] 

as the product of raw data vector D by a transformation 
matrix T:   

p = D * T = [Xg Yg yi ]    (1) 
where the raw data vector  is 
                         D = [xt yt xi yi xm ym xr yr xp yp ]   (2) 
t= thumb, i= index, m= medium, r= ring, p= pinky. 
 

Hand shape is sub-divided in two components, Xg and 
Yg. The first component measures abduction (finger 
spread) or rolling with respect to the wrist; the second 
component measures finger bending. The other 
component of posture space, palm orientation yi, classifies 
postures into three broad subclasses: closed, horizontal, 
and vertical (or open). Index y-position is used for this 
purpose. Transformation matrix  
 

        T =    1 0 1 0 1 0 1 0 1 0    T       (3) 
   0 1 0 1 0 1 0 1 0 1 
   0 0 0 1 0 0 0 0 0 0 

 
extracts posture components as 
 

Xg = Σ xn, n Є {t,i,m,r,p};                   (4) 
 Yg = Σ yn, n Є {t,i,m,r,p}; (5) 
 yi = Data[4]   (6) 

 
called: X-global position (Xg), Y-global position (Yg), 
and orientation yi ( subclass). 

The first component, Xg, given by the sum of the x 
signals on the raw vector, tells us about the orientation of 
the palm; it measures hand roll when in a horizontal 
position and measures finger abduction when the fingers 
are vertical. The second component, Yg, fairly describes 
hand shape as the total number of fingers bent, obtained 
by adding all five y-signals. The fourth component of the 
10-D vector is yi. With these new features, patterns are 
easier to visualize as points in a 3-dimensional feature 
space. 

 



4. Classification 
 

Our sample space consists of 50 posture vectors p for 
each of the 26 classes (letters). Figure 4a shows the mean 
value over the 50 samples of every one of the 26 letters in 
posture space. Figure 4b shows the mean values projected 
onto the vertical axis, given by the y-position of the index 
finger yi.  
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(b) 

 
 Figure 4: (a) 26 classes plotted
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'o'=closed, '+'=horizonta

In principle, it is possible to solve any multi-class 
recognition problem with a single classifier. However the 
complexity of such a classifier would be high, as was 
found in previous work. Instead, we divide the space 
using two planes, creating three major subclasses clearly 
grouped in Figure 4b: "Vertical," "Horizontal," and 
"Closed". 

After this first hierarchical discrimination, the 
classifiers are of reduced complexity, and easy to 
implement using a single-chip PIC16f8XX micro 
controller. The process for recognizing a given posture 
can thus be described as follows: 
 

Step 1: Subclasses are discriminated using two planes 
defined by the index finger position in Figure 
4b. 

Step 2: Members of each subclass are projected onto 
the plane that defines the subclass. In other 
words, only Xg and Yg are taken into account 
later in the classification process. Figure 5(a), 
(b) and (c) show this new reduction in 
dimension. 

Step 3: If the new representation is not enough to 
discriminate a letter using a simple rule 
(Bayes' Rule, linear function), a new subclass 
is dispatched to another classifier that looks 
for particular differences from raw data. 

 
Subclass Vertical is defined by all classes below the 

plane defined by yi = 9. The letters 'B,' 'D,' 'K,' 'L,' 'R,' 'U,' 
'V,' and 'W' belong to this subclass. Subclass Horizontal is 
placed between the planes defined by yi = 9 and the plane 
defined by yi = 12. The letters 'C,' 'E,' 'G,' 'H,' 'J,' 'P,' 'T,' 
'X,' and 'Z' belong to this subclass. All classes with yi >12 
belong to subclass Closed. That is the case for letters 'A,' 
'F,' 'I,' 'M,' 'N,' 'O,' 'Q,' 'S,' and 'Y.' 
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5. Hierarchical Structure 
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Figure 6. Classifier's Hierarchy. 

 
6. Results 
 

The classification method was implemented as a series 
of 'if-then-else' sentences using Matlab 5.0, and was 
tested using a total of 1,300 samples to measure the 
recognition rate, before the micro controller was 
programmed with the algorithm. Twenty-one out of the 
26 letters reached a 100% recognition rate using re 
substitution method. Letters 'I' and 'Y' overlapped, as 
shown in Figure 5(a). To recognize them, Bayes' Rule 
was applied as follows: sample x is assigned to class wI 
if: 
                    p(x|wI) p(wI) > p(x|wY) p(wY) (7) 
 
where p(wI) is the prior probability of the letter 'I' and 
p(wY) is the prior probability of the letter 'Y.' To estimate 
conditional probabilities p(x|wI) and p(x|wY), we used the 
histograms with the class distribution over Xg. 

The misclassification rate introduced by this Bayes' 
Rule, based on histograms, is estimated as the percentage 
of classified samples. In particular, 2 samples of Y are 
miss classified as members of class I, the error rate is: 
E(Y) = 2 / 50 = 4%. 
    The letters 'R,' 'U,' and 'V' represented the worst cases, 
as their class distributions overlap significantly, making it 
impossible for a linear function to discriminate them 
without errors; two bins of class 'U,' and one  from classes 
'V' and 'R' are misclassified dropping the accuracy to 
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90%, 78%, and 96%, respectively. The feature used to 
assemble the histogram in this case is the index X 
position, or finger abduction. 
 
7. Conclusions and Future Work 
 

A portable, battery-powered finger spelling recognizer 
has been built using state-of-the-art, but affordable, 
MEMS accelerometers. To our knowledge, the use of 
accelerometers at the PIP joints in a self-contained system 
to recognize the ASL alphabet is novel. The 
representation of signs as a set of 3-D patterns and the 
subsequent projection onto planes that allow the reduction 
of the problem dimensions seems also to be a novel 
approach in hand shape recognition. The system proved to 
be flexible and accurate for recognizing signs from 
different users even though they were not experimented 
signers. Unlike the CyberGlove and DataGlove, accuracy 
is not user-dependent, does not depend on hand size, and 
does not require user-specific calibration. The main 
problem of using accelerometers as angular position 
sensors is that they respond to change with respect to the 
gravitational vector g, but are insensitive to rotations 
around it. Then, is not possible to use the Accele Glove 
with horizontal postures, as are the NASA postures. An 
advantage of the projection method is that after the 
projection of a subclass onto its corresponding plane, it is 
possible to find empty spaces where a complete new sign 
can be introduced. That is the case with the 'space' ('B' 
posture with extended thumb) that was added to the ASL 
alphabet to indicate separation between words, and 'enter'  
('thumbs up') which indicates that the word or sentence is 
complete and has to be sent to the synthesizer. These two 
commands really transformed the system into a Finger 
Spelling to Speech Translator.  

Future work may include investigating the impact of 
changing weights in the transformation matrix T on the 
recognition rate of the most difficult letters. 
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