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1. INTRODUCTION

A. Ramsey Numbers for Paths

If G1 and G2 are graphs, then the Ramsey number R(G1, G2) is the smallest positive
integer n such that if the edges of a complete graph Kn are partitioned into 2 disjoint
color classes giving graphs H1 and H2, then one of the subgraphs Hi (i = 1, 2) has a
subgraph isomorphic to Gi. The existence of such a positive integer is guaranteed by
Ramsey’s original paper [13]. The number R(G1, G2) is called the Ramsey number
for the graphs G1 and G2. The determination of these numbers has turned out to be
remarkably difficult in certain cases (see e.g., [4] or [12] for results and problems).
In this article, we consider the case when each Gi is a path Pn on n vertices. A
theorem of Gerencsér and Gyárfás [3] states that

R(Pn, Pn) =
⌊

3n − 2

2

⌋
. (1)

Our main result vaguely says that asymptotically this result (perhaps surprisingly)
does not change if, instead of a complete graph, a complete graph with “three large
holes” (i.e., a balanced tripartite graph) is colored. More precisely:

Theorem 1. In any two-coloring of the edges of the complete tripartite graph
K(n, n, n) there is a monochromatic P(1−o(1))2n.

We note that recently there has been some interest in tripartite versions of classical
results, see e.g., the result of Magyar and Martin [11], a tripartite version of the
Corrádi-Hajnal Theorem.

In the proof of Theorem 1 the notion of a connected matching plays a central role;
this is a matching M in a graph G such that all edges of M are in the same connected
component of G. The approach was suggested by Łuczak [10] and applied in [2,5].

Sections 2 and 3 provide our main tools including the Regularity Lemma. Then
in Section 4, we prove our main lemma (Lemma 7) which states that in any two-
coloring of a (1 − ε)-dense tripartite graph G(l, l, l) there is a monochromatic
connected matching covering almost 2l vertices. Finally in Section 5, we show
how Lemma 7 implies Theorem 1.

It is worth noting that Theorem 1 remains true (with the proof of this article)
if o(n2) edges are missing from K(n, n, n). It seems reasonable to conjecture that
the following (sharp) version also holds: if the edges of K(n, n, n) are two-colored,
then there exists a monochromatic P2n+1—this would generalize (1) for odd n.
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B. Notation and Definitions

For basic graph concepts see the monograph of Bollobás [1]. Disjoint union of
sets will be sometimes denoted by +. V (G) and E(G) denote the vertex-set and
the edge-set of the graph G. Usually, Gn is a graph with n vertices, G(k, k, k)
is a tripartite graph with k-element vertex classes. (A, B, E) denotes a bipartite
graph G = (V, E), where V = A + B, and E ⊂ A × B. Kn is the complete graph
on n vertices, K(n1, . . . , nk) is the complete k-partite graph with classes containing
n1, . . . , nk vertices, Pn (Cn) is the path (cycle) with n vertices. For a graph G and a
subset U of its vertices, G|U is the restriction to U of G. �(v) is the set of neighbors
of v ∈ V . Hence, the size of �(v) is |�(v)| = deg(v) = degG(v), the degree of v.
δ(G) stands for the minimum, and �(G) for the maximum degree in G. For a vertex
v ∈ V and set U ⊂ V − {v}, we write deg(v, U) for the number of edges from v to
U. A graph Gn is γ-dense if it has at least γ

(
n

2

)
edges. G(k, k, k) is γ-dense if it

contains at least 3γk2 edges. When A, B are disjoint subsets of V (G), we denote
by eG(A, B) the number of edges of G with one endpoint in A and the other in B.
For non-empty A and B,

dG(A, B) = eG(A, B)

|A||B|
is the density of the graph between A and B.

Definition 1. The bipartite graph G = (A, B, E) is (ε, G)-regular if

X ⊂ A, Y ⊂ B, |X| > ε|A|, |Y | > ε|B| imply |dG(X, Y ) − dG(A, B)| < ε,

otherwise it is ε-irregular.

2. THE REGULARITY LEMMA

In the proof, a two-color version of the Regularity Lemma plays a central role.

Lemma 1 (Regularity Lemma [14]). For every positive ε and positive integer m,
there are positive integers M and n0 such that for n ≥ n0 the following holds. For
all graphs G1 and G2 with V (G1) = V (G2) = V , |V | = n, there is a partition of
V into l + 1 classes (clusters)

V = V0 + V1 + V2 + · · · + Vl

such that

� m ≤ l ≤ M
� |V1| = |V2| = · · · = |Vl|
� |V0| < εn
� apart from at most ε

(
l

2

)
exceptional pairs, the pairs {Vi, Vj} are (ε, Gs)-regular

for s = 1, 2.
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For an extensive survey on different variants of the Regularity Lemma see [8].
Note also that if we apply the Regularity Lemma for a balanced tripartite graph
G, we can guarantee that for each cluster that is not V0, all vertices of the cluster
belong to the same partite class of G (see e.g., [11]).

We will also use the following simple property of (ε, G)-regular pairs.

Lemma 2. Let G be a bipartite graph with bipartition V (G) = V1 ∪ V2 such that
|V1| = |V2| = m ≥ 45. Furthermore, let eG(V1, V2) ≥ m2/4 and the pair {V1, V2}
be (ε, G)-regular for 0 < ε < 0.01. Then for every pair of vertices v′, v′′ ∈ V (G),
where deg(v′), deg(v′′) ≥ m/5, G contains a path of length at least (1 − 5ε)2m

connecting v′ and v′′.

This lemma is used by Łuczak in [10]. Lemma 2 (with somewhat weaker
parameters) also follows from the much stronger Blow-up Lemma (see [6] and [7]).

3. FURTHER GRAPH THEORY TOOLS

A set M of pairwise disjoint edges of a graph G is called a matching. The size |M| of
a maximum matching is the matching number, ν(G). A key notion in our approach
is the notion of a connected matching. A matching M is connected in G if all edges
of M are in the same component of G. The following result is often referred to as
the Tutte–Berge formula (see e.g., in [9] Theorem 3.1.14). We shall use c(G) and
co(G) for the number of components and odd components of a graph G and def(G),
the deficiency of G, is defined as |V (G)| − 2ν(G).

Lemma 3. For any graph G, def (G) = max{co(G \ S) − |S|} where the
maximum is taken over all S ⊆ V (G).

We also need the following obvious property of maximum matchings.

Lemma 4. Suppose M = {e1, . . . , ek} is a maximum matching in a graph G.
Then V (G) \ V (M) spans an independent set and one can select one end point xi

of each ei so that for each i, 1 ≤ i ≤ k, there is at most one edge in G from xi to
V (G) \ V (M).

For a tripartite graph G = G(l, l, l), we shall work with its tripartite complement,
G, defined as the graph we obtain from the usual complement after deleting all edges
within the partite classes. The next lemmas collect some simple properties of graphs
of high density.

Lemma 5. Assume that G = G(l, l, l) is a (1 − ε)-dense tripartite graph. Then
G has a tripartite subgraph H = H(k, k, k) with k ≥ (1 − 2

√
ε)l such that: A.

�(H) < 2
√

εl; B. δ(H) ≥ (2 − 6
√

ε)l; C. H is (1 − 3
√

ε)-dense.

Proof. If G has p vertices in the same partite class with degree at least 2
√

εl

in G, then G has at least p2
√

εl edges. Therefore p2
√

εl ≤ 3εl2, implying p ≤
3
2

√
εl < 2

√
εl. Removing these p vertices from each partite class, the remaining

vertices induce the subgraph H. Properties A. and B. are obvious and C. follows
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from

|E(H)| ≥ |V (H)|δ(H)

2
≥ |V (H)|(2 − 6

√
ε)l

2
= 3k(1 − 3

√
ε)l ≥ 3(1 − 3

√
ε)k2.

�
Lemma 6. Assume �(Gn) <

√
εn and H = [A, B] is a bipartite subgraph of Gn

with 2
√

εn < |A| ≤ |B|. Then H is a connected subgraph of Gn and contains a
matching of size at least |A| − √

εn. Moreover, if only 2
√

εn < |B| and A 	= ∅ is
assumed then there is a subgraph H ′ which is connected and covers A and all but
at most

√
εn vertices of B.

Proof. Two vertices in A (B) have a common neighbor in B (A). Also if a ∈
A, b ∈ B then any neighbor of a and b have a common neighbor in A. Thus H is a
connected subgraph. Moreover any maximum matching M misses fewer than

√
εn

vertices of A. The statement about H ′ follows by fixing a vertex a ∈ A and H ′ is
obtained by deleting from B the vertices nonadjacent to A. �

4. LARGE MONOCHROMATIC CONNECTED MATCHINGS IN

BALANCED TRIPARTITE GRAPHS

A monochromatic (say red) matching in a colored complete or almost complete
graph is called connected if its edges are all in the same monochromatic connected
red component. For example, if K4 is three-colored so that each color class has two
disjoint edges (factorization of K4) then the largest monochromatic matching has
two edges, but the largest connected monochromatic matching has only one edge.

In our main lemma, we show that we can find large monochromatic connected
matchings in balanced tripartite graphs.

Lemma 7. Suppose that
√

ε < 1
132 and l ≥ 1√

ε(1−2
√

ε)
. Then every two-coloring

of a (1 − ε)-dense tripartite graph G(l, l, l) contains a monochromatic connected
matching covering at least (2 − 532

√
ε)l vertices.

Proof. By Lemma 5 select H = H(k, k, k) ⊆ G(l, l, l) with �(H) < 2
√

εl,
δ(H) ≥ (2 − 6

√
ε)l and k ≥ (1 − 2

√
ε)l. Let Vi denote the partite classes of H.

We claim first that there is a set Z ⊆ V (H) such that |Z| ≥ 3k(1 − 6
√

ε) and in
one of the two colors, the edges of this color inside Z determine only one nontrivial
component. This color is called the color of Z.

To prove the claim, select a largest monochromatic, say, red component C1. Set
Ri = Vi ∩ V (C1), Si = Vi \ V (C1). If V (C1) covers two of the Vi-s then Z = V (H)
satisfies the claim with the red color. Thus at least two of the Si-s are nonempty.
Furthermore, by the choice of C1, |C1| ≥ (1 − 3

√
ε)l by B. of Lemma 5.

Call a set small if it has less than 4
√

εl elements, otherwise it is large. The
condition

√
ε < 1

10 ensures that 8
√

εl ≤ (1 − 2
√

ε)l ≤ k, thus at least one of
|Ri|, |Si| is large. Lemma 6 with 3l in the role of n and with 2

3

√
ε in the role

of
√

ε can be applied to H since �(H) < 2
√

εl = 2
3

√
ε3l. This gives that [Ri, Sj]
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is connected in blue if both Ri, Sj are large. Else it has a blue component covering
all but at most 2

√
εl vertices of the larger part if only one of them is large and the

other is nonempty. With these remarks in mind we have the following cases.
If all the three Si-s are small then C1 misses only these small sets, thus

|C1| ≥ 3k − 12
√

εl ≥ 3(1 − 2
√

ε)l − 12
√

εl = (1 − 6
√

ε)3l ≥ (1 − 6
√

ε)3k (2)

and the claim follows with Z = V (C1) in color red.
If exactly one Si, say, S1 is large then R2, R3 are both large. Lemma 6 implies

that C2 = S1 ∪ R2 ∪ R3 is connected in blue. If R1 is small then C2 works as Z in
blue with the same estimate as (2). If R1 is large then it is joined to C2 through S2

or through S3, whichever is nonempty. Thus (2) works with reserve.
If exactly two Si-s are large, say, S1, S2, then S3 is small implying that R3 is large.

Lemma 6 ensures that C3 = S1 ∪ S2 ∪ R3 is connected in blue. Then, applying
Lemma 6 repeatedly, R1, R2 join to C3. Thus Z = V (H) works in color blue.

If all Si-s are large we use that some Ri, say, R1 is large,

|R1| ≥ 1

3
|C1| ≥ 1

3
(1 − 3

√
ε)l ≥ 4

√
εl

if
√

ε < 1
15 . Then, R1 ∪ S1 ∪ S2 ∪ S3 is connected in blue and R2 ∪ R3 is absorbed

into that blue component. Thus, in this case Z = V (H) is connected in blue and
the claim is proved.

Now, we define a new tripartite graph H ′ by deleting all edges of H inside
V (H) \ Z in the color of Z. Then we select a maximum monochromatic matching
M of H ′ in the color of Z, say, red, it is automatic that M is connected. Apply Lemma
4 to select one end point of each edge of M, their set is denoted by U, the set of the
other end points is denoted by T. Set Ui = U ∩ Vi, Ti = T ∩ Vi, let Mij denote the
edges of M going from Vi to Vj, mij = |Mij|. Set Wi = Vi \ (Ui ∪ Ti), define H∗ as
the tripartite subgraph of H ′ induced by V (H ′) \ (T1 ∪ T2 ∪ T3).

Now Lemma 4 implies (with the convention that the exceptional red edge from
each u ∈ Ui to Wj is deleted) that the following bipartite subgraphs of H∗ have
only blue edges:

[U1, W2], [U1, W3], [U2, W1], [U2, W3], [U3, W1], [U3, W2],

[W1, W2], [W1, W3], [W2, W3]. (3)

From now on, we shall consider H∗ as the tripartite graph defined by the (blue)
edge sets of the bipartite graphs in (3), thus the edge sets of the bipartite graphs
[Ui, Uj] are ignored.

Claim 1. Let B be any of the bipartite graphs [Ui, Wj], [Wi, Wj], i 	= j, 1 ≤ i <

j ≤ 3. Then �(B) < 22
√

εk.
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Proof. Adding the losses from deleting the red edges of V (H) \ Z, one red
edge per vertex from u ∈ Ui to Wj we have

�(B) ≤ 2
√

εl + (|V (H)| − |Z|) + 1 ≤ 2
√

εl + (3k − (1 − 6
√

ε)3k) + 1

≤
(

2
√

ε

1 − 2
√

ε
+ 18

√
ε

)
k + 1 < (3

√
ε + 18

√
ε)k + 1 ≤ 22

√
εk (4)

where we used that
√

ε < 1
6 and

1

1 − 2
√

ε
k ≥ l ≥ 1√

ε(1 − 2
√

ε)proving Claim 1. �
Next we establish inequalities to prove that (the blue graph) H∗ has an almost

spanning connected matching. Since each Vi is partitioned by Ui, Ti, Wi we have

|Ui| + |Ti| + |Wi| = k (5)

for 1 ≤ i ≤ 3. Also, we may assume

|M| = |U1| + |U2| + |U3| = |T1| + |T2| + |T3| = m12 + m13 + m23 < k (6)

otherwise M is a connected red matching of size k ≥ (1 − 2
√

ε)l, covering at least
(2 − 4

√
ε)l vertices of G.

Notice that |V (H∗)| = 3k − |T1 ∪ T2 ∪ T3| = 3k − |M| > 2k. Since |W1| +
|W2| + |W3| = 3k − 2|M| > k, (6) gives

3∑
i=1

Ui <

3∑
i=1

Wi. (7)

Using (6),

|U1| ≤ m12 + m13 < 2k − m12 − m13 − 2m23

= k − (m12 + m23) + k − (m13 + m23) = |W2| + |W3|

and by symmetry we get

|U1| < |W2| + |W3|, |U2| < |W1| + |W3|, |U3| < |W1| + |W2|. (8)

Since from (5) |U1| + |W1| = k − |T1| and |U2| + |W2| + |U3| + |W3| =
|V (H∗)| − (|U1| + |W1|), using (6) we get the following

(|U1| + |W1|) − (|U2| + |U3| + W2| + |W3|) = 2k − 2|T1| − |V (H∗)|
= |T2| + |T3| − |T1| − k < 0,
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giving the last set of inequalities:

|U1| + |W1| < |U2| + |U3| + |W2| + |W3|,
|U2| + |W2| < |U1| + |U3| + |W1| + |W3|,
|U3| + |W3| < |U1| + |U2| + |W1| + |W2|. (9)

Let S be an arbitrary subset of V (H∗). Partition S into six parts, S ∩ Ui, S ∩ Wi and
let S∗ = S ∪ M where M is the union of those Ui-s and Wi-s that satisfy |Ui \ S| <

44
√

εk or |Wi \ S| < 44
√

εk. Then we have

|S∗| ≤ |S| + 6 × 44
√

εk. (10)

Claim 2. c(H∗ \ S∗) ≤ |S∗| + 1.

Proof. Call Ui (Wi) full, if S∗ ∩ Ui = Ui (S∗ ∩ Wi = Wi). Observe that if i 	= j

and neither Ui nor Wj are full then |Ui \ S∗| ≥ 44
√

εk, |Wj \ S∗| ≥ 44
√

εk

and by Claim 1 at most 22
√

εk edges are missing from the bipartite
graph B = [Ui \ S∗, Wj \ S∗]. Therefore, by Lemma 6, B is connected. The
same argument shows that [Wi \ S∗, Wj \ S∗] is connected for i 	= j whenever
Wi, Wj are not full. This argument shows that there is at most one nontrivial
component, all other components of H∗ \ S∗ are trivial, that is, isolated vertices.
It is obvious that removing vertices of S∗ from components that are not full can
not decrease the number of components of H∗ \ S∗. Therefore, we may assume
all sets Ui, Wi are either full or empty (i.e., Ui ∩ S∗, Wi ∩ S∗ are empty). This
reduces the claim to check the following property of the weighted graph Q on
six vertices, the skeleton of H∗, defined with vertices ui, wi, 1 ≤ i ≤ 3 and edges
(ui, wj), (wi, wj), 1 ≤ i < j ≤ 3 and vertex-weights |Ui|, |Wi|:
For every S ⊆ V (Q) the total weight of the isolated points of V (Q) \ S is smaller
than the weight of S.

A moment of reflection gives that inequalities (7), (8), (9) state precisely this,
finishing the proof of Claim 2. �

Observe that for X ⊆ X∗, c(G \ X) − |X| ≤ c(G \ X∗) − |X∗| + 2(|X∗| − |X|).
Using this observation, Claim 2, (10), we get

c(H∗ \ S) − |S| ≤ c(H∗ \ S∗) − |S∗| + 2(|S∗| − |S|) ≤ 1 + 2(|S∗| − |S|)
≤ 2 × 6 × 44

√
εk

for any S ⊆ V (H∗). Applying Lemma 3 we conclude that

2k − 2ν(H∗) < |V (H∗)| − 2ν(H∗) = def(H∗) = max{co(H∗ \ S) − |S|}
≤ max{c(H∗ \ S) − |S|} ≤ 528

√
εk
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thus H∗ has a matching M2 covering at least

2k − 528
√

εk ≥ (2 − 528
√

ε)(1 − 2
√

ε)l

= (2 − 532
√

ε + 1056ε)l ≥ (2 − 532
√

ε)l

vertices of G.
To see that M2 is connected, we show that H∗ is connected. Recall that |W1| +

|W2| + |W3| > k, so at least one |Wi| is large, say, |W1| ≥ k
3 > 44

√
εk if 1

132 >
√

ε.
Also, by (6), all Wi-s are nonempty. Applying Lemma 6 to the bipartite graphs
[W2, W1], [W3, W1] we get components covering W2, W3 and all but at most 22

√
ε

vertices of W1. These components must intersect by our assumption so W1 ∪ W2 ∪
W3 is in the same component C of H∗. The same argument shows that U2, U3

also belongs to C. The only problematic set is U1, which can be disconnected from
W2 ∪ W3. To avoid that, we may assume that |M| < (1 − 11

√
ε)k, otherwise the red

matching is of size (1 − 11
√

ε)k ≥ (1 − 11
√

ε)(1 − 2
√

ε)l, covering (2 − 26
√

ε +
44ε)l > (2 − 26

√
ε)l vertices of G. Then |W2| + |W3| > 2k − 2|M| ≥ 2k − 2(1 −

11
√

ε)k = 22
√

εk which (through Lemma 6) ensures that no vertex of U1 can be
disconnected from C.

It is easy to check that 2 − 532
√

ε is the smallest coefficient of l among the
estimates. �

5. PROOF OF THEOREM 1

We will assume that n is sufficiently large. Let 0 < δ < 1 be arbitrary and choose

ε = 1

3

(
δ

225

)2

. (11)

We need to show that each 2-edge coloring of K(n, n, n) leads to a
monochromatic path of length at least (1 − δ)2n. Consider a 2-edge coloring
(G1, G2) of K(n, n, n). Let Vi denote the partite classes. Apply the two-color
tripartite version of the Regularity Lemma (Lemma 1), with ε as in (11) and
(by using the remark after the lemma) we can get a partition for i = 1, 2, 3 of
Vi = V 0

i + V 1
i + · · · + V l

i , where |Vj

i | = m, 1 ≤ j ≤ l, 1 ≤ i ≤ 3 and |V 0
i | < εn,

1 ≤ i ≤ 3. We define the following reduced graph Gr: The vertices of Gr are
p

j

i , 1 ≤ j ≤ l, 1 ≤ i ≤ 3, and we have an edge between vertices p
j1
i1

and p
j2
i2

,

1 ≤ j1, j2 ≤ l, 1 ≤ i1, i2 ≤ 3, i1 	= i2, if the pair {Vj1
i1

, V
j2
i2

} is (ε, Gs)-regular for

s = 1, 2. Thus we have a one-to-one correspondence f : p
j

i → V
j

i between the
vertices of Gr and the non-exceptional clusters of the partition. Then Gr is a
(1 − ε)-dense balanced tripartite graph. Define a 2-edge coloring (Gr

1, G
r
2) of Gr

in the following way. The color of the edge between the clusters V
j1
i1

and V
j2
i2

is the

majority color in the pair {Vj1
i1

, V
j2
i2

}.
Journal of Graph Theory DOI 10.1002/jgt
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Lemma 7 implies that in such a 2-coloring of Gr we can find a monochromatic
connected matching M = {e1, e2, . . . , el1} covering at least (2 − 532

√
3ε)l vertices

of Gr. Assume that M is in Gr
1. Thus we have

∣∣∣∪l1
i=1 ∪p∈ei

f (p)
∣∣∣ ≥ (2 − 532

√
3ε)(1 − ε)n ≥ (2 − 534

√
3ε)n. (12)

Furthermore, define f (ei) = (Ci
1, C

i
2) for 1 ≤ i ≤ l1 where Ci

1, C
i
2 are the clusters

assigned to the end points of ei.
Since M is a connected matching in Gr

1 we can find a connecting path Pr
i in Gr

1

from f−1(Ci
2) to f−1(Ci+1

1 ) for every 1 ≤ i ≤ l1 − 1. Note that these paths in Gr
1

may not be internally vertex disjoint. From these paths Pr
i in Gr

1, we can construct
vertex disjoint connecting paths Pi in G1 connecting a typical vertex vi

2 of Ci
2 to

a typical vertex vi+1
1 of Ci+1

1 . More precisely, we construct P1 with the following
simple greedy strategy. Denote Pr

1 = (p1, . . . , pt), 2 ≤ t ≤ 3l, where according to
the definition f (p1) = C1

2 and f (pt) = C2
1. Let the first vertex u1 (= v1

2) of P1

be a vertex u1 ∈ C1
2 for which degG1 (u1, f (p2)) ≥ m/4 and degG1 (u1, C

1
1) ≥ m/4.

By ε-regularity, most of the vertices satisfy this in C1
2. The second vertex u2 of

P1 is a vertex u2 ∈ (f (p2) ∩ NG1 (u1)) for which degG1 (u2, f (p3)) ≥ m/4. Again
by regularity most vertices satisfy this in f (p2) ∩ NG1 (u1). The third vertex u3

of P1 is a vertex u3 ∈ (f (p3) ∩ NG1 (u2)) for which degG1 (u3, f (p4)) ≥ m/4. We
continue in this fashion, finally the last vertex ut (= v2

1) of P1 is a vertex ut ∈
(f (pt) ∩ NG1 (ut−1)) for which degG1 (ut, C

2
2) ≥ m/4.

Then we move on to the next connecting path P2. Here we follow the same
greedy procedure, we pick the next vertex from the next cluster in Pr

2. However, if
the cluster has occurred already on the paths Pr

1 or Pr
2, then we just have to make

sure that we pick a vertex that has not been used on P1 or P2.
We continue in this fashion and construct the vertex disjoint connecting paths

Pi in G1, 1 ≤ i ≤ l1 − 1. These will be parts of the final path in G1. We remove
the internal vertices of these paths from G1. By doing this we may create some
discrepancies in the cardinalities of the clusters of this connected matching. We
remove at most (3l)2 vertices from each cluster of the matching to assure that now
we have the same number of vertices left in each cluster of the matching. Then by
applying Lemma 2 for 1 ≤ i ≤ l1, we get a path in G1|f (ei) connecting vi

1 and vi
2

that contains almost all of the vertices of f (ei) (in case of i = 1 we just select a long
path of f (e1) starting from v1

2 and in case of i = l1, we select a long path of f (el1 )
starting from v

l1
1 . Finally using (11) and (12) we get a path in G1 that contains at

least

(2 − 534
√

3ε − 16ε)n ≥ (2 − 550
√

3ε)n = (1 − 225
√

3ε)2n = (1 − δ)2n

vertices. This completes the proof of Theorem 1. �
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