Consequence Relations and Natural Deduction

Joshua D. Guttman
Worcester Polytechnic Institute

September 16, 2010

Contents
|1 Consequence Relations| 1
2 A Derivation System for “Natural Deduction”| 3
|13 Derivations with Explicit Proof Objects| 5
4 _How to Beta-Reducel 8
4.1 How to a-Convertl 8
4.2 How to f-Reduce| 10
[Reduction and Typing for Proof Terms| 11
5 DINE| .+ v v v o e e e e e e e e e e e 11
b2 Reductionl oo 13
6 Normalization| 14

1 Consequence Relations

A useful notion that cuts across both semantic (model-oriented) and syntac-
tic (derivation-oriented) issues is the notion of a consequence relation. We
will use capital Greek letters like I', A (Gamma and Delta) to refer to finite
sets of formulas, and lower case Greek letters like ¢, (phi and psi) to refer
to individual formulas. We will save ink by writing I'; A for the set I' U A,
and I', ¢ for the set I' U {¢}, etc.

Version of: September 16, 2010 2

By ¢[t1/z1, ... tn/xy], we mean the result of plugging in the terms ¢4, ..., t,
in place of the variables x1,...,z,. We assume that all the z; are different
variables, and that all of the plugging in happens at once. So, if there are
x9s inside the term ¢, they are not substituted with tgs. T'[t1/z1, ...t/]
means the result of doing the substitutions to all the formulas in I'.

Definition 1 Suppose that = is a relation between finite sets of formulas
and indwidual formulas, as in I' < ¢. Then < is a consequence relation iff
it satisfies these properties:

Reflexivity: I', ¢ < ¢;
Transitivity: I' < ¢ and I', ¢ X ¢ imply I' < 1);
Weakening: I' < ¢ implies ', A < ¢; and

Substitution: I' < ¢ implies I'[t1/x1,...tn/xn] 2 Blt1/x1, .. . th/zy].

For now, we will focus on formulas with no variables, so Substitution will
be irrelevant. We will ignore it until later. The Reflexivity and Tran-
sitivity rules ensure that a consequence relation is a partial order, when
restricted to sets containing just one assumption. The Weakening rule
“lifts” this partial order to sets with more members.

We refer to an instance of a relation I' < ¢ or any I' R ¢ as a judgment.

Both semantic notions such as entailment and syntactic notions such as
derivability give us examples of consequence relations. Suppose we have a
notion of model such as M |= ¢ as defined in the Dougherty lecture notes,
Def. 2.2.2E] Then we have a corresponding notion of (semantic) entailment
defined:

Definition 2 I entails ¢, written I' IF ¢, holds iff, for all models M.:
If for each ¢ € T, M | 4,
then M | ¢.

That is, I' IF ¢ means that every model that makes all of the formulas in I'
true makes ¢ true too.

Lemma 3 FEntailment is a consequence relation, i.e. I satisfies reflexivity,
transitivity, and weakening in Def. [1:

! Available at URL http://web.cs.wpi.edu/~guttman/cs521_website/Dougherty_
lecture_notes.pdf.

http://web.cs.wpi.edu/~guttman/cs521_website/Dougherty_lecture_notes.pdf
http://web.cs.wpi.edu/~guttman/cs521_website/Dougherty_lecture_notes.pdf

Version of: September 16, 2010 3

TF¢ TF T'F ¢AD T'F ¢AD
TF oAt T - ¢ T F 4

Figure 1: ND Introduction and Elimination Rules for A

Lo - - ¢— '+ o
'k ¢—1 |)

Figure 2: ND Introduction and Elimination Rules for —

1. T¢Ik ¢;
2.TIF¢ and T, ¢ - imply T IFY; and
3. T'IF ¢ implies T', A I+ ¢.

We turn next to showing that a particular set of rules for constructing proofs
is also a consequence relation.

2 A Derivation System for “Natural Deduction”

We consider the rules suggested by Gerhart Gentzen as a “natural” form of
deduction [3]. Gentzen considered these rules natural because they seemed
to match directly the meaning of each logical operator.

Each logical operator has one or a couple of rules that allow you to
prove formulas containing it as the outermost operator. These are called
introduction rules. Each operator also has one or a couple of rules that
allow you to prove other formulas by extracting the logical content in a
formula containing it as outermost operator. They are called elimination
rules. The introduction rules push formulas up in the partial ordering, while
the elimination rules hold them down. Between them, the introduction and
elimination rules fiz the meaning of the logical operators purely in terms of
their deductive power.

All of this extends to much richer logics, as we will see.

The rules are spread out through Figs.

Definition 4 A natural deduction derivation is a tree, conventionally writ-
ten with the conclusion, the root, at the bottom, such that each judgment is
the conclusion of a rule.

A derivation is a natural deduction derivation in intuitionist proposi-
tional logic if each rule is one of those shown in Figs. [IH4)

Version of: September 16, 2010 4

TF ¢ T F 4
TF oV TFove

I'-oVvy et x TIiptkx
I+ x

Figure 3: ND Introduction and Elimination Rules for Vv

'+ 1L
o - ¢ '+ ¢

Figure 4: ND Axioms and Rule for L

An example derivation is shown in Fig. |5l It proves F (pAgqg) — (pV q).
There are two questions we’d immediately like answers to. First, do the
derivable judgments form a consequence relation? That is, if I' < ¢ means
that there is a derivation of I' = ¢ using our rules, then is < a consequence
relation?

Second, how do derivable judgments relate to entailment? If I' F ¢ is
derivable, then is I" IF ¢ true? If I' IF ¢ then is I' F ¢ derivable?

We can answer the first question affirmatively.

Lemma 5 The set of derivable judgments I' = ¢ form a consequence
relation.

Proof: 1. Reflexivity holds because T g is always a derivation.
2. Transitivity holds by Fig. [6]
3. Weakening holds by induction on derivations:

Base Case Suppose that there is a derivation of I' = ¢ consisting only of
an application of the Axiom rule. That is, ¢ € I'. Thus, ¢ € I', A, so
LA F ¢ is an application of the Axiom rule.

Induction Step Suppose that we are given a derivation d where the last
step is an application of one of the rules from Figs. and the previ-

pAqg - pAgq
pAg bt p
pAq - pVg
F(pAg) — (pVa)

Figure 5: An Example Derivation

Version of: September 16, 2010 5

dq

: d2
Lo -9 :
Tro-v TFé

I' =y

Figure 6: Composing Derivations for Transitivity

ous steps generate one or more subderivations d;, each with conclusion
i = .

Induction hypothesis. Assume that for each of the subderivations d;,
there is a weakened subderivation W (d;) such that W (d;) has conclu-
sion I';; A F ;.

Construct the desired derivation of I'; A F ¢ by combining the weak-
ened subderivations W (d;) using the same rule of inference.

a
One part of the second question is easy to answer.
Lemma 6 + C .
That is, if ' & ¢ is derivable, then ' I+ ¢.
Proof: By induction on derivations. O

On the other hand, F C IF. There are entailment relations that cannot be
derived using these rules.

Challenge. Find a I', ¢ such that I' I ¢ but I' F ¢ is not derivable using
our rules. How would one prove it not derivable?

Question. If these rules do not characterize the semantic entailment rela-
tion generated from the classical =, what do they characterize?

3 Derivations with Explicit Proof Objects

In this section we annotate our derivations with a representation of the
proofs the derivations construct. This will allow us to manipulate the forms
of proofs, and also to treat proof and computation in an overlapping way.
The remaining presentation draws heavily on [II, 2, [].

Version of: September 16, 2010 6

T'ksi¢g Tkt

I'E (s,t): p AU
' - s:pAY ' s:9pAY
I F fst(s): ¢ ' b scd(s): ¢

Figure 7: Rules for Conjunction, with Explicit Proof Objects

'k s: ¢ ' - s:y
' F (ft,s): oV I' F (rgt,s): oV
' s:oVy Tix:p F t:x Ty:v F riy
' F cases(s,\z.t,\y.r): x

Figure 8: Rules for Disjunction, with Explicit Proof Objects

Definition 7 By a context I', we mean a set of pairs consisting of a variable
and a formula, such that no variable appears more than once. We write
members of I' in the form v: ¢, so a context takes the form:

(U qbl,...’Uil (bz

The empty context is permitted, i.e. when ¢ = 0 there are no v: ¢ pairs.

Thus, a context is a finite partial function from variables to formulas. Hence-
forth, we will use I' for contexts rather than simply sets of formulas.

We annotate each of the rules of Figs. with explicit proof objects
in such a way that the introduction rules and elimination rules cancel out,
yielding Figs[7HIO] If a derivation ends with an introduction rule followed
by an elimination rule, then we should be able to extract the proof object
for the subderivation before the two redundant steps. For instance, the
conjunction introduction rule constructs a pair object, from which the two
elimination rules can extract the components, i.e. recover the embedded
proofs of the individual conjuncts. Likewise, the disjunction introduction
rules tag their subderivation s: ¢ or s: 1, so that the cases construct can
insert it into the appropriate branch proving x. The rule for falsehood has a
less symmetrical role: We call it the “empty promise” rule, on the grounds
that it should never be possible to apply it to a closed (variable-free) term

Iz:¢ F s: 9 'k s:¢p— k-t ¢
' X.s:p— I'F (st): ¢

Figure 9: Rules for Implication, with Explicit Proof Objects

Version of: September 16, 2010 7

' - s: L
Tz:o b xz: ¢ I' - emp(s): ¢

Figure 10: Rules for Axioms and Falsehood, with Explicit Proof Objects

s,t,r u= w |
(s,t) | fst(s) | scd(s) |
(A.s) | st |
(Ift,s) | (rgt,s) | cases(s,t,r)
v o= | v | o

Figure 11: Syntax of Proof Terms

s. We give the syntax of explicit proof terms in Fig. Compound terms
of certain forms may be reduced as indicated in the reduction rules shown
in Fig. We regard Fig. as giving a kind of operational semantics
for an extremely simple programming language. Unfortunately, the most
important reduction rule, the “beta rule” 3, is not as simple as it looks, as
we will explain in Section[d We will also use some “compile-time” reduction
rules that tell us how to push the destructuring operators fst, scd, cases, and
function application through a cases operator. They look like rules for code
transformation used in some compilers, sometimes called partial evaluation
rules. They are needed to give “normal forms” the logical interpretation we
want. In proof theory, they are due to Dag Prawitz [5]. These rules are
shown in Fig. Their purpose is to enable further reductions. That is, if
the consequent ¢ or alternative r contains a constructor, then these rules will
allow it to be canceled at compile time, even if it is not yet known whether
the test s will be filled in (at run-time) with a value (Ift,s’) or (rgt, s').

fst((s, s')) — S

scd((s, s')) —
cases((Ift,s),t,r) — ts
cases((rgt,s),t,r) —, T s

(v .s)t —y S[t/v] (B)

Figure 12: Reduction Rules for Proof Terms: Local Rules

Version of: September 16, 2010 8

fst(cases(s,t,r)) —y cases(s,fstot,fstor)
scd(cases(s, t,1)) —y cases(s,scd o t,scd o)
cases(cases(s,t,), u, w) —y cases(s, \v . cases(t(v), u, w),

v . cases(r(v), u, w))
u (cases(s,t,r)) —y cases(s,uot,uor)

Figure 13: Reduction Rules for Proof Terms: Compile-time Rules

4 How to Beta-Reduce

The rule for B-reduction is complicated by the need to rename bound vari-

ables when evaluating s[t/v], i.e. plugging a term ¢ into a term s in place of

v. The problems arise when t contains a free occurrence of a variable x, but

within s, v has an occurrence in the body of some A-binder Az . r. In this

situation, z’s free occurrences in ¢ would be “captured” by this A-binder.
As an example, consider

(M. (Az . (zv))) (x).

If we reduce it by plugging in z in place of v, we should not obtain (Ax . (z x)).
Nothing here asks us to accept a function and apply it to itself.

Instead, we would like to change the name of the bound variable x in
Az . (x v) before plugging in the meaningful, externally chosen value for x
in place of v. Thus, we first a-convert Az . (x v) by renaming its x to some
new variable z. Now there is no danger and we plug in the free z in place of
v without risk of capturing z, obtaining Az . (z z). After all, the renaming
can do no harm: the bound variable x or z will really only get its value later
when we apply this term to some argument, which will furnish its value.

For this reason, we first explain how to a-convert.

4.1 How to a-Convert

Definition 8 (Free and bound variables) We define the free variables
and the bound variables of a term recursively:

fv(v) = {v} bv(v) =0
fv(st) =fv(s) Ufv(t) bv(s t) = bv(s) U bv(t)
fv(Av . s) =fv(s) \ {v} bv(Av . s) = bv(s) U {v}

The variables of s are those of both kinds: vars(s) = fv(s) U bv(s).

Version of: September 16, 2010 9

Be careful: there are terms in which a variable v occurs both free and bound.
For instance, letting s be (Av . x v)(v), v € fv(s) U bv(s).

We call an object 0 = v — v a (one-variable) replacement. Suppose
that \v . s is a lambda expression whose topmost bound variable v is the
same as the argument of o. Then the result of o on Av . s is v’ . s, where
s’ arises by replacing every free occurrence of v by v’ throughout s.

For instance, the result of ¢ = v — v/ on the term

A (A .vx) o)
ML (W .v)).

The body of the first term has only one free occurrence of v, which has been
replaced by v'.

If o & fv(Av . s), then the result of o = v — v’ on Av . s will represent
the same function as Av . s. We cannot prove this currently, since we
haven’t formalized “the function that s represents.” However, the claim is
a reasonable constraint on any formalization we would give: The name of
the bound variable v doesn’t matter, since it is gone as soon as we plug in
an argument for v. Moreover, we will plug in the argument in the same
locations in the result \v’ . s’ asin A\v . s.

Two terms are a-equivalent if one can be obtained from the other by
applying this operation to their parts.

Definition 9 «a-equivalence, written =, is the smallest relation such that:
1. s=4 sy
2. if s=q 8 and t =, t', then (st) =, (s' t');
3. if s=q 8, then (M . s) =4 (Mv . §');
4. if v g fv(l . s), and \' . " is the result of v— v on v . s, then
(v . 8) =4 (W .).
Lemma 10 Let s,t be terms.
1. bv(s) and fv(s) are finite.
2. Ift is a subterm of s, then fv(t) C vars(s).

3. Let F CV be a finite set of variables. There is an s’ such that ' =, s
and bv(s')N F = 0.

Version of: September 16, 2010 10

4. There is a s’ such that s’ =4, s and bv(s') Nfv(t) = 0.

5. There is an s’ such that s' =, s and: (i) any two A-expressions within
s’ bind different variables and (ii) bv(s") Nfv(s’) = 0.

A term s’ satisfying the conditions (i,ii) in Clauseis said to be in “standard
form.” People frequently assume, in the middle of a proof, that any term
they’re working with is in standard form. Clause [5] justifies this, because
even if the term isn’t in standard form, some a-equivalent term is.

Proof: 1. By induction on the structure of terms. Base case. If s is a
variable v, then bv(v) = () and fv(v) = {v}, both of which are finite.

Induction step. Suppose (i.h.) that bv(s) and fv(s) are finite, and so are
bv(t) and fv(t).

Then so are fv(s t) and bv(s t), since the union of two finite sets is finite.
fv(Av . s) is a subset of fv(s), so finite. bv(Av . s) is the union of the finite
set {v} with a finite set, so also finite.

2. For every path p to an occurrence of a free variable v in ¢, consider
q"p, where ¢ is a path in s to an occurrence of t. Then ¢ p is a path to v.
It is a path to a bound occurrence if g traverses some Av, and otherwise it
is a path to a free occurrence.

3. Let (v;);en be an infinite sequence that enumerates all the variables
v € V. For any term t, let fresh(t) = max{i: v; € F' Uvars(t)}: so fresh(t)
is well-defined because F' and vars(t) are finite. Now argue by induction on
the structure of terms.

Base case. If s is a variable v, then bv(v) = (), so s’ can be v.

Induction step. Suppose given to and ¢1. Assume (i.h.) that there are ¢,
and t} such that t; =, ¢; and bv(t;) N F = 0.

If s = (to t1), then the desired s is ' = (¢ t}).

If s =Xv.ty, and v € F, then the desired s' is s’ = v . t{,.

Otherwise, let v = fresh(t;,), and let ¢’ result from s’ under v — v'.

4. Apply Clause 3 to F' = fv(t).

5. Use v’ = fresh(t;)) as in Clause 3, starting with F' = vars(s). 0

4.2 How to -Reduce

Terminology varies slightly among the different notions introduced in the
next definition.

Definition 11 Let s = \v . sp, and let t be a term. Let s = X\’ . s, be
chosen in some canonical way such that s' =4 s and bv(s')Nfv(t) = 0. Then

Version of: September 16, 2010 11

so[t/v'] is defined to be the result of replacing every free occurrence of v' with
the term t.
We say (s t) B-reduces to r iff r =4 s[t/v'], and we write (s t) —p 7.
We write s —g1 t for the least relation such that:

1. s —y t implies s —p1 t;
2. 50 —p1 51 implies:
(a) (sot) —p1 (s11);

(b) (tso) —p1 (ts1); and
(C) AU . S0 —p31 AU . s1.

—g 1is the least relation which is transitive and closed under =, and includes
—g1. Thus, s —gt holds whenever s =4 t, or s —g1 t, or there is an r such
that s —gr and r —gt.

The relation —, gives the correct meaning for the last line of Fig.

5 Reduction and Typing for Proof Terms

Throughout Section [4] we have ignored the typing discipline and the other
forms of proof terms. The whole discussion there extends mechanically to
the other proof terms, and remains equally applicable if typing is altered or

discarded.

5.1 Typing

The type structure ensures interesting additional properties. We here follow
Barendregt [I, Section 3.1].

We will write henceforth I' = s: ¢ to mean that there is a derivation
using the explicit proof rules (Figs. where I' = s: ¢ is the last line of
the derivation (the root of the tree).

Lemma 12 (Context Lemma) Suppose that T',T" are contexts.
1. IfT CIV, thenT + s: ¢ implies T + s: ¢.
2. IfT' F s: ¢, then fv(s) C dom(T").
3. T F s:¢, and " =T fv(s), thenT' + s: ¢

Version of: September 16, 2010 12

Proof: By induction on derivations. Clause 1 is the analog to Weakening
(Lemma [5)) in the explicit proof formalism. O
Clause 2 of this lemma has a significant consequence: it says that the closed
proof objects—the ones with no free variables—are very important. They
are the only ones that prove a conclusion with no premises, i.e. with I' = ().
The other clauses say that premises in I" with variables not appearing free
in the right hand side do no good (Clause 3) and do no harm (Clause 1).

We next summarize what must be true when I' F s: ¢, as a function of
the syntactic form of s as a proof term. Naturally, for a given proof term, we
can use this lemma repeatedly on its subexpressions to unfold the derivation
from the bottom up.

Lemma 13 (Generation) Suppose that T' & so: ¢. If sg is of the form:
v, then z: ¢ € I';

(s,t), then ¢ =1 Ao and T F s: ¢ and T F t: ¢g;

fst(s), then for some ¢, I' - s: ¢ Ay

scd(s), then for some ¢, T' b s: 1 A o;

Av . s, then ¢ =@ — ¢ and T',v: ¢1 F ¢o;

(st), then for some), ' b s:1 — ¢ and T + t:1);

(Ift,s), then ¢ =1V o andT' F s: ¢q;

(rgt, s), then ¢ = @1V 2 and ' F s: ¢po;

cases(s,t,r), then for some disjunction ¥y V o, I' F s:1 V g, and
F'Ftiypr— ¢, and T F r: o — .

Proof: The proof is essentially by pattern matching the form of each rule’s
conclusion. The only wrinkle is in the last clause, where we have an implica-
tion ¥ — ¢ because we have lambda-bound the variable in each subsidiary
derivation in the or-elimination rule. O

Lemma 14 (Subterms typable) Suppose that T' + s: ¢, and t is a
subterm of s. Then for some I'' and some 1, I t: 1.
Indeed, with our current rules, I' D T' and v is a subformula of ¢.

Version of: September 16, 2010 13

Proof: By induction on the derivations. O
Note, however, that there are some terms that are not typable with any I’
and ¢. An example is (z z). So no term with any part of this form is typable
in this system.

The following lemma shows that proof terms are generic. Derivations do
not depend on the fact that any formula is atomic. Thus, the same explicit
proof term can have many typings (and prove many theorems) if an atomic
formula part is replaced by a compound.

Lemma 15 (Generic proof objects) Suppose for some atomic formula
p, Dyx:p & s:¢. Then for any o, T,x: 2 = s: ¢, where ¢ results from
¢ by replacing every occurrence of p with the formula 1.

Lemma 16 Suppose that I'yx: ¢ + s: ¢ and ' + t:¢. Then I' F
s[t/x]:

This leads directly to a crucial theorem about the reduction relation, relating
reduction to derivations (or type judgments, which is the same thing).

5.2 Reduction

Throughout Section [4) we ignored the other proof terms, generated using
pairing (-,-) and the functions fst,scd,cases. The discussion there can be
easily extended to the larger language. In particular, the definition of =,
extends mechanically through the remaining proof terms, with the same
properties. The reduction relation takes the form:

Definition 17 The one-step reduction relation —1 is the smallest relation
such that:

1. If s — t as defined in Figs. then s — t;

2. so — s1 implies:

(1) (sot) — (s11); (1) (ts0) — (L s1);
0

(i) Av . sy — Av . s1; (iv) fst(sg) — fst(s1);

(v) scd(sg) — scd(s1); (vi) (so,t) — (s1,1);
(vii) (t,s0) — (t,s1) (viii) cases(sg,t,r) — cases(s1,t,7);
(iz) cases(t, sg,) (x) cases(t,r,sg) — cases(t,r,s1).

— cases(t, s1,7);

The reduction relation —™* is the least relation which is transitive and closed
under =, and includes —.

Version of: September 16, 2010 14

Thus, s —™* t holds whenever s =, t, or s — t, or there is an r such that
s —*rand r —* t.

Theorem 18 (Subject Reduction) Suppose that s —* t andT' b s: ¢.
Then I' F t: ¢ also.

This is also known as a type preservation theorem, since it says that the type
¢ is preserved no matter how we reduce s. The phrase “subject reduction”
comes from the idea that in the judgment s: ¢, s is the “subject” and ¢ is
the “predicate.” It says that when the subject reduces, the predicate still
applies. Theorems of this form are ubiquitous in programming language
semantics.

6 Normalization

A term t is a normal form with respect to a reduction relation such as our
— if it has no parts that can be reduced, i.e. there is no s # t such that
t — s. If s — t and t is a normal form, then we think of ¢ as a value that
the program s computes. If in addition t is closed—it has no free variables—
this is especially appropriate. Particularly in our context where it means
that ¢ proves a theorem ¢ with no premises:) + t: ¢. In this section, we
will prove that every well-typed term has a normal form.

Theorem 19 (Normal Form) IfT" b s: ¢, then there is a normal form
t such that s —* t.

A term t is closed if it has no free variables: fv(t) = 0.

Corollary 20 If ¢ is derivable from I, then for some normalt, I' & t: ¢.
If ¢ is derivable from (), then for some closed normal t, + t: ¢.

If a derivation system satisfies the analogue of Thm. then a great deal
of information about what it proves follows by considering the forms of its
closed normal forms. This is a crucial technique for proving consistency
theorems, and also for proving that one derivation system is a conservative
extension of another.

We first illustrate the proof-theoretic meaning of the reduction steps.
Each reduction step determines a proof simplification. As a simplest ex-
ample, the rule fst((s,s’)) —, s says that a proof that first introduces a
conjunction and then eliminates it simplifies to the embedded proof of the
conjunct (Fig. . Eliminating an implication is somewhat more complex,

Version of: September 16, 2010 15

; {s _
: : 5
T'Fs:éd Tk t:e :
I'F (s,t): o AP Ik s:¢

I' b fst((s,t)): ¢

Figure 14: Reducing an Unnecessary A-Introduction/Elimination

:9 : .
: t s[t/x]
Fx:o F s: 9 : :
' X.s:9p— -t o T+ slt/a]: ¥
' (Ax.s)t: o

Figure 15: Reducing an Unnecessary —-Introduction/Elimination

because there is an implicit induction on the proof s: ¥ to ensure that any-
where the premise x: ¢ may have been used, the proof t: ¢ may in fact be
used instead (Fig. [L5)).

We can also illustrate the compile-time rules for cases. In Fig. we
see that a derivation of the form fst(cases(s, A\x . t, \y . r))—which definitely
has no reduction, except possibly within s, ¢, or r—is replaced with a re-
duction that can reduce, if either ¢ or r is of the form (uj,u2). The most
interesting case of this kind is definitely one disjunction elimination followed
by another. By this we mean, a disjunction elimination which furnishes the
major premise, the disjunction that will get eliminated, for a subsequent
disjunction elimination (Fig. . Observe that in the “reduced” deriva-
tion, the disjunction ¢ V 1 no longer separates x1 V x2 from the top of the
derivation. Thus, if we apply this transformation everywhere, no eliminated
disjunction will separate any other eliminated disjunction from the top of
the derivation.

This is in fact very important. It establishes a subformula property.

Definition 21 A derivation d with conclusion I’ = s: ¢ has the subformula
property if for every judgment A + t: p appearing in d, either

Version of: September 16, 2010 16

'k s:opVy Tox:o F t:x1 Axe Ty: ¥ F r:ix1 A xe
I' F cases(s, Az . t,A\y . 7r): x1 A X2
I' b fst(cases(s, Az . t, Ay . 7)): x1

—

Cox:od F t:x1 A xe Coy: v F or:x1 A xe

'+ s:oVvy Dox: ¢ F fst(t): x1 Lyy: o F fst(r): x1
' F cases(s, Az . fst(t), Ay . fst(r)): x1

Figure 16: Disjunction Elimination Followed by Conjunction Elimination

Tix:o F t:x1Vxe
'k s:oVvy Fy:yv F rix1Vyxe Tz:x1 Fuip
' b cases(s,\x . t, Ay . r): x1V X2 Dyv:xe F w:p
'k f:p

—

Dix:p,z:x1 F uip
Tx:o F t:x1Vxe I'x: p,v:x2 F w:p
'k s:oVy Fx:o F gi:p
L'+ ffip

f = cases(cases(s, A\x . t,\y .), Az . u, \v . w)

g1 = cases(t, \z . u, \v . w) go = cases(r, \z . u, \v . w) f' = cases(u, g1, 92)

Figure 17: Disjunction Elimination Followed by Disjunction Elimination
(analogous derivation of I',y: ¢ F go: p is omitted; z,y ¢ fv(u, w))

Version of: September 16, 2010 17

1. p is a subformula of ¢, or
2. for somev: Y €T, p is a subformula of ¥.

The minor premises of the disjunction elimination rule are the judgments
Iz: ¢ F x and T',y: ¢ F x in its premises. The minor premise of
the implication elimination rule is the derivation of T &+ t: ¢. All other
premises are major premises.

Thus, all the premises of an introduction rule are major, and a premise of
an elimination rule is major if it contains the connective being eliminated.
We note several properties of normal derivations:

Lemma 22 Suppose that d is a normal derivation of I' = s: ¢, and p is a
path upwards between any two judgments in the tree.

1. If p traverses only major premises, then p never traverses any instance
of an introduction rule after any instance of an elimination rule.

2. If p traverses only elimination rules, and p traverses a disjunction
elimination inference, then it is below any other elimination rule.

3. If p traverses only elimination rules, then p traverses at most one
disjunction elimination major premise.

4. If p traverses only introduction rules, then each successive right hand
side is a subformula of the one below it.

From this the subformula property follows:
Theorem 23 Every normal derivation has the subformula property.
Proof:
1. Conclusion of an introduction rule: subformula of ¢
2. Major premise of an elimination rule: subformula of some v in I"
3. Minor premise of —-elimination: subformula of the major premise
4. Minor premise of V-elimination: subformula of ¢

O

Corollary 24 These rules are consistent: there is no derivation + s: L.

Version of: September 16, 2010 18

Proof: Suppose that F sg: L, and let £y be minimal in the subtree ordering
among all normal ¢ such that + ¢: L.

The last inference in ¢ is not an elimination rule, because no elimination
rule has a major premise that is a subformula of 1. The last inference is
not an introduction rule apart from emp, because the conclusion contains
no connective. The last inference is not emp, because then we would have:

F os: L
Fotg: L

contradicting the minimality of #.
Finally, F ¢g: L is not an instance of the Axiom Rule. O

References

[1] Henk Barendregt. Lambda calculi with types. Handbook of logic in
computer science, 2:117-309, 1992.

[2] Henk Barendregt and Silvia Ghilezan. Lambda terms for natural de-
duction, sequent calculus and cut elimination. Journal of Functional
Programming, 10(01):121-134, 2000.

[3] Gerhard Gentzen. Investigations into logical deduction. In Manfred Sz-
abo, editor, Complete Works of Gerhard Gentzen. North Holland, 1969.
Originally published in Mathematische Zeitschrift, 1934-1935.

[4] Ralph Loader. Notes on simply typed lambda calculus. Technical Report
ECS-LFCS-98-381, University of Edinburgh, 1998. At URL http://
www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/.

[5] Dag Prawitz. Natural Deduction. A Proof-Theoretic Study. Almqvist
and Wiksell, Stockholm, 1965.

http://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/
http://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/

	Consequence Relations
	A Derivation System for ``Natural Deduction''
	Derivations with Explicit Proof Objects
	How to Beta-Reduce
	How to -Convert
	How to -Reduce

	Reduction and Typing for Proof Terms
	Typing
	Reduction

	Normalization

