
Natural Deduction and Explicit Proof Objects

Joshua D. Guttman
Worcester Polytechnic Institute

October 12, 2010

Contents

1 Consequence Relations 1

2 A Derivation System for “Natural Deduction” 3

3 Derivations with Explicit Proof Objects 5

4 How to Beta-Reduce 8
4.1 How to α-Convert . 9
4.2 How to β-Reduce . 11

5 Reduction and Typing for Proof Terms 11
5.1 Typing . 12
5.2 Reduction . 13

6 Normalization 14

7 Richer Proof Objects: Primitive Recursion 18

8 Predicate Logic 20

1 Consequence Relations

A useful notion that cuts across both semantic (model-oriented) and syntac-
tic (derivation-oriented) issues is the notion of a consequence relation. We
will use capital Greek letters like Γ,∆ (Gamma and Delta) to refer to finite

1

Version of: October 12, 2010 2

sets of formulas, and lower case Greek letters like φ, ψ (phi and psi) to refer
to individual formulas. We will save ink by writing Γ,∆ for the set Γ ∪∆,
and Γ, φ for the set Γ ∪ {φ}, etc.

By φ[t1/x1, . . . tn/xn], we mean the result of plugging in the terms t1, . . . , tn
in place of the variables x1, . . . , xn. We assume that all the xi are different
variables, and that all of the plugging in happens at once. So, if there are
x2s inside the term t1, they are not substituted with t2s. Γ[t1/x1, . . . tn/xn]
means the result of doing the substitutions to all the formulas in Γ.

Definition 1 Suppose that � is a relation between finite sets of formulas
and individual formulas, as in Γ � φ. Then � is a consequence relation iff
it satisfies these properties:

Reflexivity: Γ, φ � φ;

Transitivity: Γ � φ and Γ, φ � ψ imply Γ � ψ;

Weakening: Γ � φ implies Γ,∆ � φ; and

Substitution: Γ � φ implies Γ[t1/x1, . . . tn/xn] � φ[t1/x1, . . . tn/xn].

For now, we will focus on formulas with no variables, so Substitution will
be irrelevant. We will ignore it until later. The Reflexivity and Tran-
sitivity rules ensure that a consequence relation is a partial order, when
restricted to sets containing just one assumption. The Weakening rule
“lifts” this partial order to sets with more members.

We refer to an instance of a relation Γ � φ or any Γ R φ as a judgment.
Both semantic notions such as entailment and syntactic notions such as

derivability give us examples of consequence relations. Suppose we have a
notion of model such as M |= φ as defined in the Dougherty lecture notes,
Def. 2.2.2.1 Then we have a corresponding notion of (semantic) entailment
defined:

Definition 2 Γ entails φ, written Γ φ, holds iff, for all models M:

If for each ψ ∈ Γ, M |= ψ,

then M |= φ.

That is, Γ φ means that every model that makes all of the formulas in Γ
true makes φ true too.

1Available at URL http://web.cs.wpi.edu/~guttman/cs521_website/Dougherty_

lecture_notes.pdf.

http://web.cs.wpi.edu/~guttman/cs521_website/Dougherty_lecture_notes.pdf
http://web.cs.wpi.edu/~guttman/cs521_website/Dougherty_lecture_notes.pdf

Version of: October 12, 2010 3

Γ ` φ Γ ` ψ

Γ ` φ ∧ ψ
Γ ` φ ∧ ψ

Γ ` φ

Γ ` φ ∧ ψ
Γ ` ψ

Figure 1: ND Introduction and Elimination Rules for ∧

Γ, φ ` ψ

Γ ` φ→ ψ

Γ ` φ→ ψ Γ ` φ

Γ ` ψ

Figure 2: ND Introduction and Elimination Rules for →

Lemma 3 Entailment is a consequence relation, i.e. satisfies reflexivity,
transitivity, and weakening in Def. 1:

1. Γ, φ φ;

2. Γ φ and Γ, φ ψ imply Γ ψ; and

3. Γ φ implies Γ,∆ φ.

We turn next to showing that a particular set of rules for constructing proofs
is also a consequence relation.

2 A Derivation System for “Natural Deduction”

We consider the rules suggested by Gerhart Gentzen as a “natural” form of
deduction [3]. Gentzen considered these rules natural because they seemed
to match directly the meaning of each logical operator.

Each logical operator has one or a couple of rules that allow you to
prove formulas containing it as the outermost operator. These are called
introduction rules. Each operator also has one or a couple of rules that
allow you to prove other formulas by extracting the logical content in a
formula containing it as outermost operator. They are called elimination
rules. The introduction rules push formulas up in the partial ordering, while
the elimination rules hold them down. Between them, the introduction and
elimination rules fix the meaning of the logical operators purely in terms of
their deductive power.

All of this extends to much richer logics, as we will see.
The rules are spread out through Figs. 1–4.

Definition 4 A natural deduction derivation is a tree, conventionally writ-
ten with the conclusion, the root, at the bottom, such that each judgment is
the conclusion of a rule.

Version of: October 12, 2010 4

Γ ` φ

Γ ` φ ∨ ψ
Γ ` ψ

Γ ` φ ∨ ψ

Γ ` φ ∨ ψ Γ, φ ` χ Γ, ψ ` χ

Γ ` χ

Figure 3: ND Introduction and Elimination Rules for ∨

Γ, φ ` φ
Γ ` ⊥
Γ ` φ

Figure 4: ND Axioms and Rule for ⊥

A derivation is a natural deduction derivation in intuitionist proposi-
tional logic if each rule is one of those shown in Figs. 1–4.

An example derivation is shown in Fig. 5. It proves ` (p ∧ q) → (p ∨ q).
There are two questions we’d immediately like answers to. First, do the
derivable judgments form a consequence relation? That is, if Γ � φ means
that there is a derivation of Γ ` φ using our rules, then is � a consequence
relation?

Second, how do derivable judgments relate to entailment? If Γ ` φ is
derivable, then is Γ φ true? If Γ φ then is Γ ` φ derivable?

We can answer the first question affirmatively.

Lemma 5 The set of derivable judgments Γ ` φ form a consequence
relation.

Proof: 1. Reflexivity holds because Γ, φ ` φ is always a derivation.
2. Transitivity holds by Fig. 6.
3. Weakening holds by induction on derivations:

Base Case Suppose that there is a derivation of Γ ` φ consisting only of
an application of the Axiom rule. That is, φ ∈ Γ. Thus, φ ∈ Γ,∆, so

Γ,∆ ` φ is an application of the Axiom rule.

p ∧ q ` p ∧ q
p ∧ q ` p

p ∧ q ` p ∨ q
` (p ∧ q)→ (p ∨ q)

Figure 5: An Example Derivation

Version of: October 12, 2010 5

...
d1

...
Γ, φ ` ψ

Γ ` φ→ ψ

...
d2

...
Γ ` φ

Γ ` ψ

Figure 6: Composing Derivations for Transitivity

Induction Step Suppose that we are given a derivation d where the last
step is an application of one of the rules from Figs. 1–4, and the previ-
ous steps generate one or more subderivations di, each with conclusion
Γi ` ψi.

Induction hypothesis. Assume that for each of the subderivations di,
there is a weakened subderivation W (di) such that W (di) has conclu-
sion Γi,∆ ` ψi.

Construct the desired derivation of Γ,∆ ` φ by combining the weak-
ened subderivations W (di) using the same rule of inference.

ut
One part of the second question is easy to answer.

Lemma 6 ` ⊆ .
That is, if Γ ` φ is derivable, then Γ φ.

Proof: By induction on derivations. ut
On the other hand, ` (. There are entailment relations that cannot be
derived using these rules.

Challenge. Find a Γ, φ such that Γ φ but Γ ` φ is not derivable using
our rules. How would one prove it not derivable?

Question. If these rules do not characterize the semantic entailment rela-
tion generated from the classical |=, what do they characterize?

3 Derivations with Explicit Proof Objects

In this section we annotate our derivations with a representation of the
proofs the derivations construct. This will allow us to manipulate the forms

Version of: October 12, 2010 6

Γ ` s : φ Γ ` t : ψ

Γ ` 〈s, t〉 : φ ∧ ψ
Γ ` s : φ ∧ ψ
Γ ` fst(s) : φ

Γ ` s : φ ∧ ψ
Γ ` scd(s) : ψ

Figure 7: Rules for Conjunction, with Explicit Proof Objects

Γ ` s : φ

Γ ` 〈lft, s〉 : φ ∨ ψ
Γ ` s : ψ

Γ ` 〈rgt, s〉 : φ ∨ ψ
Γ ` s : φ ∨ ψ Γ, x : φ ` t : χ Γ, y : ψ ` r : χ

Γ ` cases(s, λx . t, λy . r) : χ

Figure 8: Rules for Disjunction, with Explicit Proof Objects

of proofs, and also to treat proof and computation in an overlapping way.
The remaining presentation draws heavily on [1, 2, 5].

Definition 7 By a context Γ, we mean a set of pairs consisting of a variable
and a formula, such that no variable appears more than once. We write
members of Γ in the form v : φ, so a context takes the form:

v1 : φ1, . . . vi : φi.

The empty context is permitted, i.e. when i = 0 there are no v : φ pairs.

Thus, a context is a finite partial function from variables to formulas. Hence-
forth, we will use Γ for contexts rather than simply sets of formulas.

We annotate each of the rules of Figs. 1–4 with explicit proof objects
in such a way that the introduction rules and elimination rules cancel out,
yielding Figs.7–10. If a derivation ends with an introduction rule followed
by an elimination rule, then we should be able to extract the proof object
for the subderivation before the two redundant steps. For instance, the
conjunction introduction rule constructs a pair object, from which the two
elimination rules can extract the components, i.e. recover the embedded
proofs of the individual conjuncts. Likewise, the disjunction introduction
rules tag their subderivation s : φ or s : ψ, so that the cases construct can

Γ, x : φ ` s : ψ

Γ ` λx . s : φ→ ψ

Γ ` s : φ→ ψ Γ ` t : φ

Γ ` (st) : ψ

Figure 9: Rules for Implication, with Explicit Proof Objects

Version of: October 12, 2010 7

Γ, x : φ ` x : φ
Γ ` s : ⊥

Γ ` emp(s) : φ

Figure 10: Rules for Axioms and Falsehood, with Explicit Proof Objects

s, t, r ::= v |
〈s, t〉 | fst(s) | scd(s) |
(λv . s) | s t |
〈lft, s〉 | 〈rgt, s〉 | cases(s, t, r)

v ::= x | y | v′ . . .

Figure 11: Syntax of Proof Terms

insert it into the appropriate branch proving χ. The rule for falsehood has a
less symmetrical role: We call it the “empty promise” rule, on the grounds
that it should never be possible to apply it to a closed (variable-free) term
s. We give the syntax of explicit proof terms in Fig. 11. Compound terms
of certain forms may be reduced as indicated in the reduction rules shown
in Fig. 12. We regard Fig. 12 as giving a kind of operational semantics
for an extremely simple programming language. Unfortunately, the most
important reduction rule, the “beta rule” β, is not as simple as it looks, as
we will explain in Section 4. We will also use some “compile-time” reduction
rules that tell us how to push the destructuring operators fst, scd, cases, and
function application through a cases operator. They look like rules for code
transformation used in some compilers, sometimes called partial evaluation
rules. They are needed to give “normal forms” the logical interpretation we
want. In proof theory, they are due to Dag Prawitz [6]. These rules are
shown in Fig. 13. Their purpose is to enable further reductions. That is, if
the consequent t or alternative r contains a constructor, then these rules will

fst(〈s, s′〉) −→r s
scd(〈s, s′〉) −→r s′

cases(〈lft, s〉, t, r) −→r t s
cases(〈rgt, s〉, t, r) −→r r s
(λv . s) t −→r s[t/v] (β)

Figure 12: Reduction Rules for Proof Terms: Local Rules

Version of: October 12, 2010 8

fst(cases(s, t, r)) −→r cases(s, fst ◦ t, fst ◦ r)
scd(cases(s, t, r)) −→r cases(s, scd ◦ t, scd ◦ r)
cases(cases(s, t, r), u, w) −→r cases(s, λv . cases(t(v), u, w),

λv . cases(r(v), u, w))
u (cases(s, t, r)) −→r cases(s, u ◦ t, u ◦ r)

Figure 13: Reduction Rules for Proof Terms: Compile-time Rules

allow it to be canceled at compile time, even if it is not yet known whether
the test s will be filled in (at run-time) with a value 〈lft, s′〉 or 〈rgt, s′〉.

4 How to Beta-Reduce

The rule for β-reduction is complicated by the need to rename bound vari-
ables when evaluating s[t/v], i.e. plugging a term t into a term s in place of
v. The problems arise when t contains a free occurrence of a variable x, but
within s, v has an occurrence in the body of some λ-binder λx . r. In this
situation, x’s free occurrences in t would be “captured” by this λ-binder.

As an example, consider

(λv . (λx . (x v))) (x).

If we reduce it by plugging in x in place of v, we should not obtain (λx . (x x)).
Nothing here asks us to accept a function x and apply it to itself.

Instead, we would like to change the name of the bound variable x in
λx . (x v) before plugging in the meaningful, externally chosen value for x
in place of v. Thus, we first α-convert λx . (x v) by renaming its x to some
new variable z. Now there is no danger and we plug in the free x in place of
v without risk of capturing x, obtaining λz . (z x). After all, the renaming
can do no harm: the bound variable x or z will really only get its value later
when we apply this term to some argument, which will furnish its value.

For this reason, we first explain how to α-convert.

Version of: October 12, 2010 9

4.1 How to α-Convert

Definition 8 (Free and bound variables) We define the free variables
and the bound variables of a term recursively:

fv(v) = {v} bv(v) = ∅
fv(s t) = fv(s) ∪ fv(t) bv(s t) = bv(s) ∪ bv(t)

fv(λv . s) = fv(s) \ {v} bv(λv . s) = bv(s) ∪ {v}

The variables of s are those of both kinds: vars(s) = fv(s) ∪ bv(s).

Be careful: there are terms in which a variable v occurs both free and bound.
For instance, letting s be (λv . x v)(v), v ∈ fv(s) ∪ bv(s).

We call an object σ = v 7→ v′ a (one-variable) replacement. Suppose
that λv . s is a lambda expression whose topmost bound variable v is the
same as the argument of σ. Then the result of σ on λv . s is λv′ . s′, where
s′ arises by replacing every free occurrence of v by v′ throughout s.

For instance, the result of σ = v 7→ v′ on the term

λv . ((λv . v x) v)

is
λv′ . ((λv . v x) v′).

The body of the first term has only one free occurrence of v, which has been
replaced by v′.

If v′ 6∈ fv(λv . s), then the result of σ = v 7→ v′ on λv . s will represent
the same function as λv . s. We cannot prove this currently, since we
haven’t formalized “the function that s represents.” However, the claim is
a reasonable constraint on any formalization we would give: The name of
the bound variable v doesn’t matter, since it is gone as soon as we plug in
an argument for v. Moreover, we will plug in the argument in the same
locations in the result λv′ . s′ as in λv . s.

Two terms are α-equivalent if one can be obtained from the other by
applying this operation to their parts.

Definition 9 α-equivalence, written ≡α, is the smallest relation such that:

1. s≡α s;

2. if s≡α s′ and t≡α t′, then (s t)≡α (s′ t′);

3. if s≡α s′, then (λv . s)≡α (λv . s′);

Version of: October 12, 2010 10

4. if v′ 6∈ fv(λv . s), and λv′ . s′ is the result of v 7→ v′ on λv . s, then

(λv . s)≡α (λv′ . s′).

Lemma 10 Let s, t be terms.

1. bv(s) and fv(s) are finite.

2. If t is a subterm of s, then fv(t) ⊆ vars(s).

3. Let F ⊆ V be a finite set of variables. There is an s′ such that s′ ≡α s
and bv(s′) ∩ F = ∅.

4. There is a s′ such that s′ ≡α s and bv(s′) ∩ fv(t) = ∅.

5. There is an s′ such that s′ ≡α s and: (i) any two λ-expressions within
s′ bind different variables and (ii) bv(s′) ∩ fv(s′) = ∅.

A term s′ satisfying the conditions (i,ii) in Clause 5 is said to be in “standard
form.” People frequently assume, in the middle of a proof, that any term
they’re working with is in standard form. Clause 5 justifies this, because
even if the term isn’t in standard form, some α-equivalent term is.

Proof: 1. By induction on the structure of terms. Base case. If s is a
variable v, then bv(v) = ∅ and fv(v) = {v}, both of which are finite.

Induction step. Suppose (i.h.) that bv(s) and fv(s) are finite, and so are
bv(t) and fv(t).

Then so are fv(s t) and bv(s t), since the union of two finite sets is finite.
fv(λv . s) is a subset of fv(s), so finite. bv(λv . s) is the union of the finite
set {v} with a finite set, so also finite.

2. For every path p to an occurrence of a free variable v in t, consider
q_p, where q is a path in s to an occurrence of t. Then q_p is a path to v.
It is a path to a bound occurrence if q traverses some λv, and otherwise it
is a path to a free occurrence.

3. Let 〈vi〉i∈N be an infinite sequence that enumerates all the variables
v ∈ V. For any term t, let fresh(t) = max{i : vi ∈ F ∪ vars(t)}: so fresh(t)
is well-defined because F and vars(t) are finite. Now argue by induction on
the structure of terms.

Base case. If s is a variable v, then bv(v) = ∅, so s′ can be v.
Induction step. Suppose given t0 and t1. Assume (i.h.) that there are t′0

and t′1 such that t′i ≡α ti and bv(t′i) ∩ F = ∅.
If s = (t0 t1), then the desired s′ is s′ = (t′0 t

′
1).

Version of: October 12, 2010 11

If s = λv . t0, and v 6∈ F , then the desired s′ is s′ = λv . t′0.
Otherwise, let v′ = fresh(t′0), and let t′ result from s′ under v 7→ v′.
4. Apply Clause 3 to F = fv(t).
5. Use v′ = fresh(t′0) as in Clause 3, starting with F = vars(s). ut

4.2 How to β-Reduce

Terminology varies slightly among the different notions introduced in the
next definition.

Definition 11 Let s = λv . s0, and let t be a term. Let s′ = λv′ . s′0 be
chosen in some canonical way such that s′≡α s and bv(s′)∩ fv(t) = ∅. Then
s′0[t/v′] is defined to be the result of replacing every free occurrence of v′ with
the term t.

We say (s t) β-reduces to r iff r ≡α s′0[t/v′], and we write (s t)→b r.
We write s→β1 t for the least relation such that:

1. s→b t implies s→β1 t;

2. s0 →β1 s1 implies:

(a) (s0 t)→β1 (s1 t);

(b) (t s0)→β1 (t s1); and

(c) λv . s0 →β1 λv . s1.

→β is the least relation which is transitive and closed under ≡α and includes
→β1. Thus, s→β t holds whenever s≡α t, or s→β1 t, or there is an r such
that s→β r and r →β t.

The relation →b gives the correct meaning for the last line of Fig. 12.

5 Reduction and Typing for Proof Terms

Throughout Section 4, we have ignored the typing discipline and the other
forms of proof terms. The whole discussion there extends mechanically to
the other proof terms, and remains equally applicable if typing is altered or
discarded.

Version of: October 12, 2010 12

5.1 Typing

The type structure ensures interesting additional properties. We here follow
Barendregt [1, Section 3.1].

We will write henceforth Γ ` s : φ to mean that there is a derivation
using the explicit proof rules (Figs. 7–10) where Γ ` s : φ is the last line of
the derivation (the root of the tree).

Lemma 12 (Context Lemma) Suppose that Γ,Γ′ are contexts.

1. If Γ ⊆ Γ′, then Γ ` s : φ implies Γ′ ` s : φ.

2. If Γ ` s : φ, then fv(s) ⊆ dom(Γ).

3. Γ ` s : φ, and Γ′ = Γ |̀ fv(s), then Γ′ ` s : φ

Proof: By induction on derivations. Clause 1 is the analog to Weakening
(Lemma 5) in the explicit proof formalism. ut
Clause 2 of this lemma has a significant consequence: it says that the closed
proof objects—the ones with no free variables—are very important. They
are the only ones that prove a conclusion with no premises, i.e. with Γ = ∅.
The other clauses say that premises in Γ with variables not appearing free
in the right hand side do no good (Clause 3) and do no harm (Clause 1).

We next summarize what must be true when Γ ` s : φ, as a function of
the syntactic form of s as a proof term. Naturally, for a given proof term, we
can use this lemma repeatedly on its subexpressions to unfold the derivation
from the bottom up.

Lemma 13 (Generation) Suppose that Γ ` s0 : φ. If s0 is of the form:

v, then x : φ ∈ Γ;

〈s, t〉, then φ = φ1 ∧ φ2 and Γ ` s : φ1 and Γ ` t : φ2;

fst(s), then for some ψ, Γ ` s : φ ∧ ψ;

scd(s), then for some ψ, Γ ` s : ψ ∧ φ;

λv . s, then φ = φ1 → φ2 and Γ, v : φ1 ` φ2;

(s t), then for some ψ, Γ ` s : ψ → φ and Γ ` t : ψ;

〈lft, s〉, then φ = φ1 ∨ φ2 and Γ ` s : φ1;

〈rgt, s〉, then φ = φ1 ∨ φ2 and Γ ` s : φ2;

Version of: October 12, 2010 13

cases(s, t, r), then for some disjunction ψ1 ∨ ψ2, Γ ` s : ψ1 ∨ ψ2, and
Γ ` t : ψ1 → φ, and Γ ` r : ψ2 → φ.

Proof: The proof is essentially by pattern matching the form of each rule’s
conclusion. The only wrinkle is in the last clause, where we have an implica-
tion ψ1 → φ because we have lambda-bound the variable in each subsidiary
derivation in the or-elimination rule. ut

Lemma 14 (Subterms typable) Suppose that Γ ` s : φ, and t is a
subterm of s. Then for some Γ′ and some ψ, Γ′ ` t : ψ.

Indeed, with our current rules, Γ′ ⊇ Γ and ψ is a subformula of φ.

Proof: By induction on the derivations. ut
Note, however, that there are some terms that are not typable with any Γ
and φ. An example is (x x). So no term with any part of this form is typable
in this system.

The following lemma shows that proof terms are generic. Derivations do
not depend on the fact that any formula is atomic. Thus, the same explicit
proof term can have many typings (and prove many theorems) if an atomic
formula part is replaced by a compound.

Lemma 15 (Generic proof objects) Suppose for some atomic formula
p, Γ, x : p ` s : φ. Then for any ψ, Γ, x : ψ ` s : φ′, where φ′ results from
φ by replacing every occurrence of p with the formula ψ.

Lemma 16 Suppose that Γ, x : φ ` s : ψ and Γ ` t : φ. Then Γ `
s[t/x] : ψ.

This leads directly to a crucial theorem about the reduction relation, relating
reduction to derivations (or type judgments, which is the same thing).

5.2 Reduction

Throughout Section 4, we ignored the other proof terms, generated using
pairing 〈·, ·〉 and the functions fst, scd, cases. The discussion there can be
easily extended to the larger language. In particular, the definition of ≡α
extends mechanically through the remaining proof terms, with the same
properties. The reduction relation takes the form:

Definition 17 The one-step reduction relation −→1 is the smallest relation
such that:

Version of: October 12, 2010 14

1. If s −→r t as defined in Figs. 12–13, then s −→ t;

2. s0 −→ s1 implies:

(i) (s0 t) −→ (s1 t); (ii) (t s0) −→ (t s1);
(iii) λv . s0 −→ λv . s1; (iv) fst(s0) −→ fst(s1);
(v) scd(s0) −→ scd(s1); (vi) 〈s0, t〉 −→ 〈s1, t〉;

(vii) 〈t, s0〉 −→ 〈t, s1〉 (viii) cases(s0, t, r) −→ cases(s1, t, r);
(ix) cases(t, s0, r) (x) cases(t, r, s0) −→ cases(t, r, s1).

−→ cases(t, s1, r);

The reduction relation −→∗ is the least relation which is transitive and closed
under ≡α and includes −→.

Thus, s −→∗ t holds whenever s≡α t, or s −→ t, or there is an r such that
s −→∗ r and r −→∗ t.

Theorem 18 (Subject Reduction) Suppose that s −→∗ t and Γ ` s : φ.
Then Γ ` t : φ also.

This is also known as a type preservation theorem, since it says that the type
φ is preserved no matter how we reduce s. The phrase “subject reduction”
comes from the idea that in the judgment s : φ, s is the “subject” and φ is
the “predicate.” It says that when the subject reduces, the predicate still
applies. Theorems of this form are ubiquitous in programming language
semantics.

6 Normalization

A term t is a normal form with respect to a reduction relation such as our
−→ if it has no parts that can be reduced, i.e. there is no s 6= t such that
t −→ s. If s −→ t and t is a normal form, then we think of t as a value that
the program s computes. If in addition t is closed—it has no free variables—
this is especially appropriate. Particularly in our context where it means
that t proves a theorem φ with no premises: ∅ ` t : φ. In this section, we
will prove that every well-typed term has a normal form.

Theorem 19 (Normal Form) If Γ ` s : φ, then there is a normal form
t such that s −→∗ t.

A term t is closed if it has no free variables: fv(t) = ∅.

Version of: October 12, 2010 15

...
s
...

Γ ` s : φ

...
t
...

Γ ` t : ψ

Γ ` 〈s, t〉 : φ ∧ ψ
Γ ` fst(〈s, t〉) : φ

−→

...
s
...

Γ ` s : φ

Figure 14: Reducing an Unnecessary ∧-Introduction/Elimination

...
s
...

Γ, x : φ ` s : ψ

Γ ` λx . s : φ→ ψ

...
t
...

Γ ` t : φ

Γ ` (λx . s) t : ψ

−→

...
s[t/x]

...
Γ ` s[t/x] : ψ

Figure 15: Reducing an Unnecessary →-Introduction/Elimination

Corollary 20 If φ is derivable from Γ, then for some normal t, Γ ` t : φ.
If φ is derivable from ∅, then for some closed normal t, ` t : φ.

If a derivation system satisfies the analogue of Thm. 19, then a great deal
of information about what it proves follows by considering the forms of its
closed normal forms. This is a crucial technique for proving consistency
theorems, and also for proving that one derivation system is a conservative
extension of another.

We first illustrate the proof-theoretic meaning of the reduction steps.
Each reduction step determines a proof simplification. As a simplest ex-
ample, the rule fst(〈s, s′〉) −→r s says that a proof that first introduces a
conjunction and then eliminates it simplifies to the embedded proof of the
conjunct (Fig. 14). Eliminating an implication is somewhat more complex,
because there is an implicit induction on the proof s : ψ to ensure that any-
where the premise x : φ may have been used, the proof t : φ may in fact be
used instead (Fig. 15).

We can also illustrate the compile-time rules for cases. In Fig. 16, we
see that a derivation of the form fst(cases(s, λx . t, λy . r))—which definitely
has no reduction, except possibly within s, t, or r—is replaced with a re-

Version of: October 12, 2010 16

Γ ` s : φ ∨ ψ Γ, x : φ ` t : χ1 ∧ χ2 Γ, y : ψ ` r : χ1 ∧ χ2

Γ ` cases(s, λx . t, λy . r) : χ1 ∧ χ2

Γ ` fst(cases(s, λx . t, λy . r)) : χ1

−→

Γ ` s : φ ∨ ψ
Γ, x : φ ` t : χ1 ∧ χ2

Γ, x : φ ` fst(t) : χ1

Γ, y : ψ ` r : χ1 ∧ χ2

Γ, y : φ ` fst(r) : χ1

Γ ` cases(s, λx . fst(t), λy . fst(r)) : χ1

Figure 16: Disjunction Elimination Followed by Conjunction Elimination

duction that can reduce, if either t or r is of the form 〈u1, u2〉. The most
interesting case of this kind is definitely one disjunction elimination followed
by another. By this we mean, a disjunction elimination which furnishes the
major premise, the disjunction that will get eliminated, for a subsequent
disjunction elimination (Fig. 17). Observe that in the “reduced” deriva-
tion, the disjunction φ ∨ ψ no longer separates χ1 ∨ χ2 from the top of the
derivation. Thus, if we apply this transformation everywhere, no eliminated
disjunction will separate any other eliminated disjunction from the top of
the derivation.

This is in fact very important. It establishes a subformula property.

Definition 21 A derivation d with conclusion Γ ` s : φ has the subformula
property if for every judgment ∆ ` t : ρ appearing in d, either

1. ρ is a subformula of φ, or

2. for some v : ψ ∈ Γ, ρ is a subformula of ψ.

The minor premises of the disjunction elimination rule are the judgments
Γ, x : φ ` χ and Γ, y : ψ ` χ in its premises. The minor premise of
the implication elimination rule is the derivation of Γ ` t : φ. All other
premises are major premises.

Thus, all the premises of an introduction rule are major, and a premise of
an elimination rule is major if it contains the connective being eliminated.
We note several properties of normal derivations:

Lemma 22 Suppose that d is a normal derivation of Γ ` s : φ, and p is a
path upwards between any two judgments in the tree.

Version of: October 12, 2010 17

Γ ` s : φ ∨ ψ
Γ, x : φ ` t : χ1 ∨ χ2

Γ, y : ψ ` r : χ1 ∨ χ2

Γ ` cases(s, λx . t, λy . r) : χ1 ∨ χ2

Γ, z : χ1 ` u : ρ

Γ, v : χ2 ` w : ρ

Γ ` f : ρ

−→

Γ ` s : φ ∨ ψ
Γ, x : φ ` t : χ1 ∨ χ2

Γ, x : φ, z : χ1 ` u : ρ

Γ, x : φ, v : χ2 ` w : ρ

Γ, x : φ ` g1 : ρ

Γ ` f ′ : ρ

f = cases(cases(s, λx . t, λy . r), λz . u, λv . w)

g1 = cases(t, λz . u, λv . w) g2 = cases(r, λz . u, λv . w) f ′ = cases(u, g1, g2)

Figure 17: Disjunction Elimination Followed by Disjunction Elimination
(analogous derivation of Γ, y : ψ ` g2 : ρ is omitted; x, y 6∈ fv(u,w))

1. If p traverses only major premises, then p never traverses any instance
of an introduction rule after any instance of an elimination rule.

2. If p traverses only elimination rules, and p traverses a disjunction
elimination inference, then it is below any other elimination rule.

3. If p traverses only elimination rules, then p traverses at most one
disjunction elimination major premise.

4. If p traverses only introduction rules, then each successive right hand
side is a subformula of the one below it.

From this the subformula property follows:

Theorem 23 Every normal derivation has the subformula property.

Proof: 1. Conclusion of an introduction rule: subformula of φ.
2. Major premise of an elimination rule: subformula of some ψ in Γ.
3. Minor premise of →-elimination: subformula of the major premise.
4. Minor premise of ∨-elimination: subformula of φ. ut

Corollary 24 These rules are consistent: there is no derivation ` s : ⊥.

Version of: October 12, 2010 18

Proof: Suppose that ` s0 : ⊥, and let t0 be minimal in the subtree ordering
among all normal t such that ` t : ⊥.

The last inference in t0 is not an elimination rule, because no elimination
rule has a major premise that is a subformula of ⊥. The last inference is
not an introduction rule apart from emp, because the conclusion contains
no connective. The last inference is not emp, because then we would have:

` s : ⊥
` t0 : ⊥

contradicting the minimality of t0.
Finally, ` t0 : ⊥ is not an instance of the Axiom Rule. ut

7 Richer Proof Objects: Primitive Recursion

In this section, we stipulate that there is a particular atomic proposition N .
Think of N as saying that there are natural numbers. Since this is true, we
will enrich our proof objects to provide proofs of N . In fact, rather a lot of
proofs of N . The interest of this proof system is not in what you can prove,
but instead in what the proofs are, since the proofs provide a much more
interesting notion of computation than the previous sections. This system
is officially known as “Gödel’s system T,” since Kurt Gödel introduced it in
a paper from 1958 [4].

The new constants in the syntax of proof terms are 0, S, and ρ. 0 and
S represent 0 and the successor function. 0 is a proof-by-exhibit that there
are natural numbers, and if t is such a proof-by-exhibit, then so is S(t).

The operator ρ provides proof by primitive recursion. That is, rho(0, a, f)
evaluates to the “seed value” a, and ρ(S(t), a, f) evaluates to the result of
applying f once more than ρ(t, a, f). The trick to the current system is that
f may be a function N → N , but it may also be a function of “higher type”
such as (N → N) → (N → N), and primitive recursion at higher types is
rather powerful. It allows us to define functions that would not be definable
using ρ only at the lowest type N → N , including fast-growing functions
such as Ackermann’s function.

The typing rules for 0, S, ρ are in Fig. 18. Observe that ρ produces values
of any type σ, and requires only that the seed value a is of that type, and
the iterated function f : σ → σ preserves that type. The first argument t
must be a term of type N , saying how many times to iterate f starting from
a. Of course, t may contain free variables. The reduction rules in Fig. 19
for 0, S, ρ formalize the explanation we have given for ρ’s meaning. Using

Version of: October 12, 2010 19

Γ ` 0: N
Γ ` t : N

Γ ` S(t) : N

Γ ` t : N Γ ` a : σ Γ ` f : σ → σ

Γ ` ρ(t, a, f) : σ

Figure 18: Typing Rules for 0, S, ρ

ρ(0, a, f) −→r a
ρ(S(t), a, f) −→r f(ρ(t, a, f))

Figure 19: Reduction Rules for ρ

these operators, we can define addition, multiplication, and exponentiation:

m+ n = ρ(n,m, S)

m ∗ n = ρ(n, 0, (λv . v +m))

mn = ρ(n, 1, (λv . v ∗m))

Now we can compute e.g. S(S(0)) + S(S(S(0))) as:

ρ(S(S(S(0))), S(S(0)), S)−→S(ρ(S(S(0)), S(S(0)), S))−→
S(S(ρ(S(0), S(S(0)), S)))−→S(S(S(ρ(0, S(S(0)), S))))−→S(S(S(S(S(0)))))

meaning that 2 + 3 = 5.
In this system, we are not restricted to definitions like this, where the

function argument to ρ is of type N → N . We can also, for instance,
construct functions by primitive recursion in which the function argument
is of type (N → N) → (N → N), which we can then apply to a function
f : N → N and a value n : N to obtain a result of type N . For instance, the
function

λg . λn . ρ(n, 1, g)

will iterate its function argument g starting from 1, applying it n times.
Thus, if we write:

λx . ρ(x, (λm . m ∗ 2), (λgn . ρ(n, 1, g))),

then this is a function that—given x—produces a function doing x-nested

Version of: October 12, 2010 20

doubling. That is,

ρ(0, (λm . m ∗ 2), (λgn . ρ(n, 1, g))) −→ λm . m ∗ 2

ρ(1, (λm . m ∗ 2), (λgn . ρ(n, 1, g))) −→ λn . ρ(n, 1, λm . m ∗ 2)

−→ λn . 2n

ρ(2, (λm . m ∗ 2), (λgn . ρ(n, 1, g))) −→ λn . ρ(n, 1, ρ(1, (λm . m ∗ 2),

(λgn . ρ(n, 1, g))))

= λn . ρ(n, 1, λm . 2m).

As the first argument increases, this quickly becomes a very fast-growing
function of the second argument. Indeed,

λk . (ρ(k, (λm . m ∗ 2), (λgn . ρ(n, 1, g))) k)

can be shown to grow faster than any function that can be defined using
only ρ applied to functions f : N → N (no matter how many times).

Although this system encodes powerful computations, as a logic it is
expressively puny. It contains many interesting proofs, but they all prove
a small number of boring theorems, such as N , which says that there are
natural numbers.

8 Predicate Logic

We turn now to a logic that expresses more interesting propositions, which
we will combine with numbers and recursion in the next section.

Definition 25 Let V be an infinite set of objects called variables, disjoint
from all the sets introduced below.

1. A signature Σ consists of two disjoint sets:

Function constants F , written c0, c1, f0, f1, g, etc. and

Relation constants R, written P0, Q1, R0, etc.

together with a function Σ: F ∪R → N, the natural numbers.

Σ(f) or Σ(R) is called the arity or degree of f,R. If a function
constant has degree 0, it is called an individual constant. If a relation
constant has degree 0, it is called a propositional constant.

2. The terms over Σ are defined recursively:

Version of: October 12, 2010 21

A variable v ∈ V is a term;

A function symbol f ∈ F , together with n terms t1, . . . , tn form a
term f(t1, . . . , tn), if n = Σ(f). In particular, if 0 = Σ(c), then
c() is a term, which we will in fact write c.

3. The atomic formulas over Σ are defined:

A relation symbol R ∈ R together with n terms t1, . . . , tn form a
term R(t1, . . . , tn), if n = Σ(R). In particular, if 0 = Σ(P), then
P () is a term, which we will in fact write P .

4. The formulas over Σ are defined recursively:

An atomic formula R(t1, . . . , tn) is a formula;

A conjunction φ ∧ ψ of formulas φ, ψ is a formula;

A disjunction φ ∨ ψ of formulas φ, ψ is a formula;

An implication φ→ ψ of formulas φ, ψ is a formula;

A universal quantification ∀v . φ is a formula, assuming v ∈ V
and φ is a formula; and

An existential quantification ∃v . φ is a formula, assuming v ∈ V
and φ is a formula.

We use parentheses as needed to avoid ambiguity, e.g. φ ∧ (ψ ∨ χ).

5. A variable v ∈ V occurs free in the term v, and it occurs free in
f(t1, . . . , tn) if it occurs free in any of the ti. No variable occurs bound
in any term.

6. v occurs free in the formula R(t1, . . . , tn) if it occurs free in any of the
terms ti. It occurs free in φ∧ψ, φ∨ψ, φ→ ψ if it occurs free in either
φ or ψ.

It occurs free in ∀x . φ or ∃x . φ if it occurs free in φ and v and x are
different variables.

7. v occurs bound in formula φ ∧ ψ, φ ∨ ψ, φ → ψ if it occurs free in
either φ or ψ. v does not occur bound in R(t1, . . . , tn).

It occurs bound in ∀x . φ or ∃x . φ if it occurs bound in φ or if v and
x are the same variable.

8. We write fv(φ) and bv(φ) for the free and bound variables (resp) of φ.

Version of: October 12, 2010 22

Γ ` s : φ
(1)

Γ ` (λx . s) : ∀z . φ[z/x]

Γ ` s : ∀x . φ
Γ ` (s t) : φ[t/x]

Figure 20: Rules for ∀. (1) requires x 6∈ fv(Γ), and either z is x or z 6∈ fv(φ)

Γ ` s : φ[t/x]

Γ ` 〈E, t, s〉 : ∃x . φ
Γ ` s : ∃x . φ Γ, v : φ ` t : ψ

x 6∈ fv(Γ, ψ)
Γ ` ecase(s, (λxv . t)) : ψ

Figure 21: Rules for ∃

Notice that v ∈ fv(φ) ∩ bv(φ) is possible, for instance P (v) ∧ (∀v . ψ).
Propositional logic is certainly a special case of this, namely where Σ(R) = 0
for each R ∈ R. We add introduction and elimination rules for ∀ and ∃ to
the rules available in propositional logic, as shown in Figs. 20–21.

The proof terms for the universal quantifier simply reuse the λ operator.2

A proof of a universal formula ∀x . φ is a function that, given an instance
t for x, produces a proof of φ[t/x]. For instance, a proof that ends with an
application of ∀-introduction, if followed by an application of ∀-elimination
using t, really does yield a proof of φ[t/x].

Namely, we take the subderivation up until immediately before the ∀-
introduction, and substitute t in place of x throughout the that derivation.
Since x does not appear free in Γ, the resulting object remains a derivation.
Hence, this syntactic operation constructs direct proofs of φ[t/x] given a
direct proof of ∀x . φ and a choice of t.

The proof term for an existential quantifier is however something new,
although reminiscent of disjunction proof terms. We have the additional
local reduction rule shown in Fig. 22.

References

[1] Henk Barendregt. Lambda calculi with types. Handbook of logic in
computer science, 2:117–309, 1992.

2We here ignore the [z/x] substitution, i.e. we assume x and z are the same variable.

ecase(〈E, t, s〉, r) −→r (r t) s

Figure 22: Local reduction rule for ∃

Version of: October 12, 2010 23

[2] Henk Barendregt and Silvia Ghilezan. Lambda terms for natural de-
duction, sequent calculus and cut elimination. Journal of Functional
Programming, 10(01):121–134, 2000.

[3] Gerhard Gentzen. Investigations into logical deduction. In Manfred Sz-
abo, editor, Complete Works of Gerhard Gentzen. North Holland, 1969.
Originally published in Mathematische Zeitschrift, 1934–1935.

[4] K. Godel. Über eine bisher noch nicht benützte Erweiterung des finiten
Standpunktes. Dialectica, 12(280-287):12, 1958. Translated in Collected
Works, v. 2, 1990, Oxford University Press.

[5] Ralph Loader. Notes on simply typed lambda calculus. Technical Report
ECS-LFCS-98-381, University of Edinburgh, 1998. At URL http://

www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/.

[6] Dag Prawitz. Natural Deduction. A Proof-Theoretic Study. Almqvist
and Wiksell, Stockholm, 1965.

http://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/
http://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/

	Consequence Relations
	A Derivation System for ``Natural Deduction''
	Derivations with Explicit Proof Objects
	How to Beta-Reduce
	How to -Convert
	How to -Reduce

	Reduction and Typing for Proof Terms
	Typing
	Reduction

	Normalization
	Richer Proof Objects: Primitive Recursion
	Predicate Logic

