HW2: CS 110X C 2013

Note: This homework (and all remaining homework assignments) is a partner homework and must be completed by each partner pair. When you complete this assignment, you must not share your answers with any other student. Only one person from a partner pair needs to submit the assignment.

Q1	
Skills	
PM-1	
CS-9	
CS-5	
Lecture	
Dependency	
Jan-15	

You can then iterate this process a number of times, computing increasingly accurate approximations. This method rapidly converges on roots of the given function. For this question, iterate 10 times, printing the computed approximation with each pass.

For this exercise, use $f(x)=3 x^{6}-5 x^{3}+13 x-17$ and $f^{\prime}(x)=18 x^{5}-15 x^{2}+13$. You must define a function, newtonMethod (), for this problem, as shown below:

Sample Output

```
>>> newtonMethod()
Enter initial guess for root -2
-1.69662921348
-1.49566634169
-1.40634825341
-1.39048574903
-1.39003925848
-1.39003891405
-1.39003891405
-1.39003891405
-1.39003891405
-1.39003891405
```

The above is the sample output when starting with -2 as the initial guess.
Ungraded: Feel free to experiment with different initial guess, and indeed, different functions $f()$ and derivatives $f^{\prime}()$.

Q3	If statement	
	Write a Python function guessingGame (). In this function, the user is trying to "guess" a secret integer value known to the program. The user has five tries to guess the number. If the user guesses too high, the program responds "Too High". If the user guesses too low, the program responds "Too Low". If they guess correctly, the program says "You Win".	
Skills		
CS-1		
Lecture		
Dependency	If the user doesn't guess the answer in 5 tries, then the program says "You Lose! My number was N"	Sample Output
Jan-18		
		Can you guess my number? 3 Your guess is too low Can you guess my number? 9 Your guess is too high Can you guess my number? 5 You Win

The context for the following questions on this homework is the Foreign Exchange Market (forex or fx) which is the global decentralized trading of international currencies. This market determines the relative values of different currencies using symbols, such as EURUSD or USDJPY. I have simplified many elements of FX for the purpose of this assignment.

An fx trader reviews the value of a currency symbol at regular one minute intervals. At the end of each minute, there is a posted close value that determines the currency
 conversion. For example, in a five minute period, one might see the following close values for EURUSD, which determines the conversion rate between Euros ($£$) and US Dollars (\$):

- 00:01 EURUSD is 1.27095
- 00:02 EURUSD is 1.271
- 00:03 EURUSD is 1.27111
- 00:04 EURUSD is 1.27126
- 00:05 EURUSD is 1.27113

As you can see, EURUSD was initially rising (which means that the EUR currency was gaining strength relative to the US Dollar), but in the fifth minute it fell back. When the value of EURUSD is 1.27095 , it means that one Euro can be exchanged for 1.27095 US Dollars.

Fx traders can only make money because of leverage; for the purpose of this assignment, however, I am simplifying the discussion. A pip is defined as 0.0001 and is a convenient unit to use when comparing the rise and fall of a currency symbol. For example, if EURUSD increases from 1.271 to 1.2711 , you could say that EURUSD rose by 1.1 pips. Alternatively, if you were to say that EURUSD had fallen 3 pips, you know that the absolute value of EURUSD had fallen by 0.0003 .

An FX Trader wants to open two kinds of positions on a currency symbol to make money.

- Long - When a trader opens a LONG position (also known as a Buy) with a given LOT SIZE on a given currency, he will only make money if the currency rises in value.
- Short - When a trader opens a SHORT position (also known as a Sell) with a given LOT SIZE on a given currency, he will only make money if the currency falls in value.

After a position has been opened, the trader can close it, which realizes a profit or a loss.
Assume the trader had opened a LONG position with lotSize $=1.0$ after the first close (that is, when EURUSD $=1.27095$ and then closed that position after the $5^{\text {th }}$ close (when EURUSD=1.27113). As you can
verify, the currency has risen 1.8 pips. In this case, the profit can be computed to be $1.8 * 1.0 * 100000=$ 18 USD\$. It's because of leverage that you need to multiply by 100,000 to compute the accurate profit.

If the trader had opened a SHORT position with lotSize $=1.0$ after the first close, then after the $5^{\text {th }}$ close he would have realized a loss of 1.8 pips, which would translate into a loss of 18 USD\$.

Q4	Plot Currency	
	Lectures contain code examples that use the pylab module. Write a function plotCurrencySymbol() that opens a window with a scatter plot of the data. Hint: range() will be useful Sample output appears on the right. The HW2.py template file contains the currencyValues list.	Figure 1 -0
Skills		
PM-7		$\begin{aligned} & 12789 \\ & 1276 \end{aligned}$
Lecture Dependency		$\begin{aligned} & 1.270 \\ & 1.268 \\ & 1.266 \end{aligned}$
Jan-17		

Compare your answers to "Standard deviation and tolerance intervals" as found in any statistics reference.

Q6
Skills
Lecture Dependency
Jan-18

Trading Strategies

Write a function tradingBackTest () that allows the user to "test" a basic trading strategy that "Buys Low" and "Sells High". Specifically, your fx trader only wants to wait for the currency to fall below a certain value, at which time he opens a BUY position. Then he will wait for the currency to rise to a certain higher level, at which point he will SELL and take a profit. The trader will never have more than one position open at a time. The following is sample input for a given low and high threshold.

```
Sample Output
>>> tradingBackTest()
Enter in low threshold to buy: 1.270
Enter in high threshold to sell: 1.276
Open BUY position at 1.26978
Close BUY position at 1.27718 with profit = 740.0
Total Profit=740.0
```

Your program must iterate over every value in currencyValues, and determine whether to open a BUY position, or close an existing BUY position for profit. As you can see above, the BUY trade was executed when the value fell below 1.270 and was closed when the value became greater than 1.276.

Note: If you get to the end of the data and you have not yet closed a position, you must then do so at STOP, as shown below:

```
Sample Output When Reaching End Of Data
>>> tradingBackTest()
Enter in low threshold to buy: 1.270
Enter in high threshold to sell: 1.3
Open BUY position at 1.26978
Close BUY position at STOP 1.27344 with profit = 366.0
Total Profit=366.0
```

Naturally, if you are too conservative, you may never open any trades:

```
Sample Output With No Trades
>>> tradingBackTest()
Enter in low threshold to buy: 1.1
Enter in high threshold to sell: 2.0
Total Profit=0
```

You must answer the following two questions for credit:

1. If you were to open (and close) a single BUY position, what is the maximum profit that you can make?
2. Find a (low, high) threshold pairing that would allow you to make multiple trades during this time period.

Hint: Use the "zoom" capability of the plot window in question 4 to locate two currency values that will allow you to open (and close) two separate positions.

How To Get Started On This Assignment

A template HW2.py file is provided to you with EURUSD financial data sampled at one minute intervals over a three-day period. As you can see, this list contains $1440 * 3=4320$ individual values.

Much of the work for this assignment will be spent trying to understand the $f x$ domain and writing the appropriate Python code. In many ways, that is as it should be! The job of a programmer is more than learning a particular syntax. You need to know how to produce code relevant for a specific problem. Sometimes the code you write is only 5 lines of code (but it will be just the right five lines of code).

Submit your HW2.py file using the web-based turnin system. As we have mentioned in class, only one of the team members needs to submit the assignment. But just make sure that something gets submitted!

