
Version: 11-11-2015 11:10 PM

CS 2223 B15 Term. Homework 2

Homework Instructions
 This homework is to be completed individually. If you have any questions as to what constitutes

improper behavior, review the examples as I have posted online

http://web.cs.wpi.edu/~heineman/html/teaching_/cs2223/b15/#policies .

 Due Date for this assignment is 2PM November 13th. Homeworks received after 2PM receive a

25% late penalty. Homeworks received after 6PM will receive zero credit.

 Submit your assignments electronically using the blackboard site for CS2223. Login to

my.wpi.edu and go to CS2223 under “My Courses” then go to “Assignments” and submit your

homework under “HW2”. You must submit a single ZIP file that contains all of your code as well

as the written answers to the assignment.

 All of your Java classes must be defined in a packager USERID where USERID is your CCC user id.

Q1. Sorting Experiments (30 pts)
The best way to evaluate comparison-based sorting algorithms is to empirically evaluate their

performance on randomized trials. You are to develop a program, similar to what you see in the book,

which reports essential statistics of the following sorting algorithms:

 Selection Sort

 Insertion Sort

 MergeSort

 QuickSort as presented in the book using the partition function shown on p. 291

 QuickAlternate as presented in the book using alternate partition as included in repository. Find

in algs.hw2.QuickAlternate

For each algorithm, you are to execute T=10 trials and report the lowest range (low and high) of the

following statistics for input size ranging from 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, and

8192. The relevant statistics are:

 Number of exch invocations

 Number of less comparisons

 Stopwatch performance for time of execution

You will sort randomized collections of uniformly distributed floating point values, as constructed using

the StdRandom.uniform() method call (as you see on p. 256 of the book). As a side note, observe

that all sorting algorithms presented sort “in place”, so you will need to generate a new array of values

for each invocation of sort.

http://web.cs.wpi.edu/~heineman/html/teaching_/cs2223/b15/#policies

Version: 11-11-2015 11:10 PM

To get started on this question, copy the relevant files from the algs.days.dayNN packages that

already implement the various sorting algorithms. Then you should modify them to record the number

of exch invocations as well as the number of less operations.

Hint: You need to determine the proper place in your code where you reset your counters for these

operations.

(15 pts) The report should following the following output: TBA. I have provided a template class,

SortComparison, in algs.hw2 which you should copy into your own project and modify

accordingly. This class will properly produce the output that is expected.

(15 pts) For each algorithm, I am asking you to specifically investigate the number of comparisons

made by each algorithm and identify the order of growth based on its performance. That is, what is the

Tilde equation that you would use to define the number of comparisons made by each algorithm on a

data set of size N.

Version: 11-11-2015 11:10 PM

Q2. Data Type Exercise (35 pts)
This assignment gives you a chance to demonstrate your ability to program with Linked Lists. You are to

implement the following data type which maintains a unique bag of items, that is, it contains no

duplicates.

package USERID.hw2;

public class UniqueBag<Item extends Comparable<Item>> {

 class Node<Item> {
 private Item item;
 private Node<Item> next;
 }

 public UniqueBag() { }
 public UniqueBag(Item[] initial) { }
 public int size() { ... }
 public boolean identical (UniqueBag other) { ... }
 public Item[] toArray() { ... }
 public boolean add(Item it) { ... }
 public boolean remove(Item it) { ... }
 public boolean contains(Item it) { ... }
 public UniqueBag<Item> intersects(UniqueBag<Item> other) { ... }
 public UniqueBag<Item> union(UniqueBag<Item> other) { ... }

The implementation must conform to performance specifications that are included in the sample

template found in algs.hw2 in the Git repository. More documentation is found in the sample file.

You are to write benchmark code that evaluates the execution performance of these methods as well.

We will validate the output against a set of test cases that we develop for the grading. Individual

breakdown of points is found on the rubric. We will release the test utility that will validate the

correctness of your implementation as well as the execution performance.

Q3. Heap Exercise (10 pts)
The heap data structure can be used to implement a Max Priority Queue (p. 318). From this base code,

add the resizing logic that we used earlier for allowing a queue to support arbitrary-sized data. There are

a number of propositions (see p. 319) that you can empirically validate if you instrument the code to

count the number of comparisons during execution:

 In an N-key priority queue, the heap requires no more than 1 + log N compares for insert

 In an N-key priority queue, the heap requires no more than 2 Log N compares for remove

maximum

Modify the HeapExercise class. You will process randomized collections of uniformly distributed

floating point values, as constructed using the StdRandom.uniform() method call (as you see on p.

256 of the book).

Version: 11-11-2015 11:10 PM

You are to execute T=10 trials and report the highest range (low and high) of the above statistics for

input size ranging from N=4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192. Complete this

evaluation as follows:

1. Randomly construct a Heap priority queue containing N values using StdRandom.

2. Once constructed, perform 1000 iterations of the following sequence

a. Remove maximum (during which you should count the number of comparisons)

b. Insert random value (during which you should count the number of comparisons)

You are to report on the highest range (low and high) of these statistics for each of the Heap sizes. Do

your statistics support the propositions stated above?

Q4. MergeSort Variations (25 pts)
MergeSort as constituted uses 2-way merges. Modify MergeSort to create a 3-way merge. That is, the

sort method divides the array a[lo..hi] into thirds, sorts each one, and combines uses a 3-way

merge.

Hint: Try to pattern your merge operation on the 2-way merge. Thus it will have the Java signature of:

// 3way-merge sorted results a[lo..left] with a[left+1..right] and
// a[right+1..hi] back into a
static void merge (Comparable[] a, int lo, int left, int right, int hi) { … }

You don’t have to handle any special cases within the sort() method if your merge works as it should.

You are to:

 (15 pts) Write a complete MergeSortThreeWay class that implements the 3-way merge sort

 (10 pts) Develop two propositions to match the F and G propositions that you find on page

272 and 275 of the book. These will compute the number of compares C(n) needed to sort an

array of length N, where you can assume N is a power of three, or 3k. And then compute A(n),

the maximum number of array access to sort an array of length N.

