
Version: 12-5-2015 9:15 AM

CS 2223 B15 Term. Homework 5

Homework Instructions

 This homework is to be completed individually. If you have any questions as to what constitutes

improper behavior, review the examples as I have posted online

http://web.cs.wpi.edu/~heineman/html/teaching_/cs2223/b15/#policies .

 Due Date for this assignment is 2PM Friday December 11th. Homeworks received after 2PM

receive a 25% late penalty. Homeworks received after 6PM will receive zero credit.

 Submit your assignments electronically using the blackboard site for CS2223. Login to

my.wpi.edu and go to CS2223 under “My Courses” then go to “Assignments” and submit your

homework under “HW5”. You must submit a single ZIP file that contains all of your code as well

as the written answers to the assignment.

 All of your Java classes must be defined in a packager USERID.hw5 where USERID is your CCC

user id (i.e., your email address without the @wpi.edu).

Primary Instructions
Submit your written answers in a file writtenAnswers.txt that you submit with your assignment.

http://web.cs.wpi.edu/~heineman/html/teaching_/cs2223/b15/#policies

Version: 12-5-2015 9:15 AM

Q1. Graph Exercise (20 pts)
(a) Write a method in Graph that returns a new Graph object which is a complement of the graph.

Define �̅� to be the complement of a graph, 𝑔, as follows:

 �̅� has the same number of vertices as 𝑔, identified by index 0 to V-1 where V is the number of

vertices in 𝑔

 In �̅�, the edge (u, v) exists if the edge (u, v) does not exist in 𝑔

 In �̅�, the edge (u, v) does not exist if the edge (u, v) exists in 𝑔

public Graph complement() { … }

(b) Demonstrate this method works by computing the complement of an empty graph with five vertices.

Output the contents of both graphs (𝑔 and �̅�) using the toString() representation

(c) Write a method that determines whether a graph is connected, that is, if there is a path from every

vertex to every other vertex in the graph.

public boolean connected() { … }

(d) Construct an example graph, 𝑔, with five vertices that has the following property:

 𝑔 is connected

 �̅� is connected

Validate your result by writing a program that shows the toString() representation of these graphs

as well as the output of calling the connected() method on each graph.

Version: 12-5-2015 9:15 AM

Q2. Status Injective Graphs (25 pts)
You are given a simple, undirected connected graph G = (V, E). For any vertex, v, in this graph you can

compute its status. The status of v is the sum of the shortest distances to every vertex in the graph

(recall that the distance of a vertex to itself is zero). Consider the graph below and designated vertex v.

The status of v is 8, since that is the accumulated sum of the shortest distance from v to every other

vertex in the graph. Note that this is not a status injective graph because two vertices have a computed

status of 8 as shown above.

(a) Modify the Graph class to complete the implementation of the status(v) method which returns

the computed status for a given vertex, v, in the graph.

public int status(int v) { … }

(b) A graph is classified as being status injective if the calculated status values for all nodes in the graph

are different integers. To convince you that such graphs exist, consider the following graph which draws

each vertex with its computed status value. As you can see, all of these values are distinct, thus this is an

example of a status injective graph.

public boolean statusInjective() { … }

(c) Bonus Question (5 pts.): Write a program to find a status injective graph with six vertices, or

demonstrate that no such graph can be found. Hint: Try to methodically create all 215 possible graphs.

Version: 12-5-2015 9:15 AM

Q3. Graph Proof and Demonstration (25 pts)
We have begun introducing proofs into the lectures, and the textbook also contains samples throughout
the different chapters. It is time for you to try your hand at a proof as it relates to an undirected graph.

(a) [10 pts] Prove that every connected graph of N vertices contains some safe vertex, v, whose removal
(including all edges incident v) will not disconnect the graph.

You may make use of the following facts:

 A graph with no vertices is also, by definition, considered to be connected

 A graph with a single vertex is, by definition, connected. Note that there are no edges in such a
graph

Hint: Depth First Search should be useful. Consider a vertex whose adjacent vertices are all marked.

(b) [5 pts] Write a method findSafeVertex() in the Graph class that returns a vertex in a connected

graph which can be deleted and enable the graph to remain connected. Note if the graph is initially not

connected, then -1 must be returned. You should check this first.

public int findSafeVertex () { … }

(c) [10 pts] The eccentricity of a vertex, v, is the length of the shortest path from that vertex to the

furthest vertex from v in the graph. Naturally the graph must be connected for this property to make

sense. With this definition in place, we can define the diameter of a graph to be the maximum eccentric

of any of its vertices. Add the following method to the Graph class, which returns -1 if the graph is not

connected.

public int diameter () { … }

Version: 12-5-2015 9:15 AM

Q4. Complete DiGraphMatrix implementation – 30 points
The book consistently uses adjacency lists to represent a graph. You will gain some experience in writing
an implementation that uses a two-dimensional adjacency matrix of size V x V to store a directed graph
with edge weights.

(a) [10 pts.] Complete the implementation of DiGraphMatrix as found in the algs.hw5 package.

(b) [15 pts.] We will cover in class the Single Source Shortest Path algorithm also known as Dijkstra’s
Algorithm (p. 652) of the book. You will implement an alternate version that works with an adjacency
matrix representation of the graph. The specification for this algorithm is given in pseudocode below.
Often you will see algorithms sketched out using similar pseudocode descriptions and so you will need
to learn how to convert these
high-level specifications into
actual code. In this case, your goal
is to compute the dist[] and
pred[] matrices and output the
dist[] values which records the
shortest total path lengths from a
single source, s, to all other
vertices in the graph.

(c) [5 pts.] Demonstrate the
correctness of your
implementation on the sample
graph provided in the figure.

