
CS2223 Algorithms D Term 2018

Exam 1 April 03, 2018

NAME: _RUBRIC FOR EXAM GRADERS______

Instructions:

 Time allowed: 50 minutes

 Show your work and justify your answers

 Use the space provided to write your answers

Total Q1 Q2 Q3 Q4 Q5

DO NOT OPEN EXAM UNTIL INSTRUCTED TO DO SO!!

Question 1. Short Answer Questions
For each of the following statements: (+3 correct answer; +2 provide explanation)

If the statement is true, circle True and explain why.

If the statement is false, circle False and explain why the statement is false.

Your explanations should be brief (using about one sentence), but complete.

(a) [5 pts.] True / False : You are given an array containing 8 integers in ascending order and you want

to check whether the array contains a specific value. You can do this using

no more than four comparisons in the worst case.

TRUE. You need 1+Floor(log N) = 1+3 = 4.

(b) [5 pts.] True / False : In a max heap with N>3 values, the root contains the largest value of the

heap, and the next two largest values in the heap are (in any order) the left

and right child of the root.

FALSE: The top node contains the max, and the 2
nd

 largest must be a

child of the root; however the 3
rd

 largest could

be a child of the 2
nd

 largest (show example).

(c) [5 pts.] True / False : You have an ordered linked list with N nodes storing integers in ascending

order. You can use binary search to determine whether the list contains a

value by inspecting no more than log (N) nodes in the worst case.

FALSE: A linked list doesn’t offer the ability to perform binary search. You have to

search each node in sequential order, and in the worst case

you have to inspect all N nodes. You can’t index into a

linked list

(d) [5 pts.] True / False : In a max heap, you can delete the largest value in the heap in time that is

independent of the number of values in the heap.

FALSE: You can find the largest value in constant time, but to delete it, you will

need to swap with final value in the heap and then call sink() which has performance

of ~log(N) where N is the number of elements in the heap.

Question 2. (20 pts.) Mathematical Analysis
You are given four unknown integers A, B, C and D. You are only allowed to call equals(X, Y) to see if X

and Y are equal to each other. You are told that there are only two distinct values in these four integers.

For example, it could be the case that [A=1, B=9, C=9, D=1] and the distinct values are 1 and 9.

[4 pts.] What is the least number of times you need to call equals(X,Y) to determine the two distinct

values for any possible four values of A, B, C, and D? [5 pts.] Describe algorithm that exhibits behavior.

TWO DISTINCT WAYS OF READING THIS PROBLEM, AND I WAS FLEXIBLE WHILE GRADING

(1) If you thought it meant two pairs of distinct numbers (for a total of four) then you only need 1

comparison in the worst case to determine the distinct values: If (A==B) then return A,C else return A,B

(2) If you thought it meant that you could have 1 value repeated three times, then in worst case need 2

comparison. If (A != B) return A,B; else they are same, so check if B=C: if it does, then return A,D since D

has to be different. If B != C then return B,C

(c) [5pts.] Let S(N) be the number of

times Math.sqrt() is invoked in

process with an array of length N

which is a power of 2. Write a

recurrence relationship that

determines the upper bound (i.e.,

worst case) for the number of times

Math.sqrt() is called.

S(N) = 2*S(N/2) + N/2

(+2 point for S(n) = ...) (+1 point for 2*), (+1 for S(N/2)), (+1 for N/2)
Note that S(1) = 1 since there is a final Sqrt invocation for problems of size 1

(d) [6pts.] Derive an exact solution to the recurrence for S(N) when N is a power of 2.

S(N) = 2*S(N) + N/2 and so write
S(N) = 2*(2*S(N/4)+N/4) + N/2, which equals 4*S(N/4) + N
S(N) = 4*(2*S(N/8)+N/8)+2*N = 8*S(N/8) + 3*(N/2)

so it looks like we can repeat K=log N times, to get

S(N) = 2^k*S(N/2^k) + k*(N/2). Now S(1) = 1, so eventually we get to
S(N) = N*1 + log N*(N/2) or N + (1/2)(N*log N)

(+2 point if they have telescoping logic). (+1 if N*Log N appears) (+1 if N*LOG N/2
appears). (+2 if they have N+ ... since that term doesn’t reduce to 0).

static int process(int[] a, int lo, int hi) {
 if (lo == hi) { return (int) Math.sqrt(a[lo]); }
 int mid = lo + (hi-lo)/2;
 int x = process(a, lo, mid) + process(a, mid+1, hi);

 for (int i = lo; i <= hi; i += 2) {
 if (Math.sqrt(a[i]) == x) { x++; }
 }
 return x;
}

Question 3. (20 pts.) Type Question
You are asked to write a method that returns a copy of a StackOfInteger object. I have given you an

extra StackOfInteger object and an extra QueueOfInteger object that you can use for additional

storage in your answer. For this question, there is no iterator for the StackOfInteger.

(a) [14 pts.] You can provide Java code or describe your answer in pseudocode.

/** Given a stack of integers, return a copy of the stack. When this method returns

the original stack must contain its original contents in their original positions. */

 public static StackOfInteger copy (StackOfInteger stack) {

 StackOfInteger extra = new StackOfInteger();

 QueueOfInteger queue = new QueueOfInteger();

Multiple ways to handle this. Note that to make a copy of ‘stack’ you have to disturb it. Let’s get started

+1 while (!stack.isEmpty()) {

+2 extra.push(stack.pop());

 } // at this point, extra is a reverse copy of ‘stack

+2 StackOfIntegers copy = new StackOfInteger();

+1 while (!extra.isEmpty()) {

+2 int x = extra.pop() // note first one popped from extra was the last one pop’d from stack

+2 stack.push(x) // by pushing both onto stack and copy, we recreate both at same time

+2 copy.push(x);

 }

+2 return copy // return the copy

b) [6 pts.] If stack has N elements, compute the total number of push OR pop calls needed in the worst

case on the stack passed into your copy method.

You will need N pop operations to be able to get the values. Then you will need to make N push

operations to restore the stack to its original structure. This gives N+N = 2N

Note that I was only asking for the operations on the original stack. MANY, MANY students just counted

up all push and pop operations, and I had graders try to figure out if you had individual separated out the

calls for stack.

Question 4. (20 pts.) Heap (you don’t really need the code, but I’m providing just in case)
public class Heap {
 int[] pq; // Store in pq[1..N] public boolean isEmpty() { return N == 0; }
 int N; // number of items in Heap public int size() { return N; }

 public Heap (int initCapacity) { void swim (int k) {
 pq = new int[initCapacity + 1]; while (k > 1 && less(k/2, k)) {
 } exch(k, k/2);
 k = k/2;
 public void insert (int x) { }
 pq[++N] = x; }
 swim(N);
 } void sink (int k) {
 while (2*k <= N) {
 public int delMax() { int j = 2*k;
 int max = pq[1]; if (j < N && less(j, j+1)) j++;
 exch(1, N--); if (!less(k, j)) break;
 pq[N+1] = null; exch(k, j);
 sink(1); k = j;
 return max; }
 } }

(a) [12 pts.] Assume you create heap=new Heap(8) and call insert with the following values in this

order: 6, 2, 9, 5, 1 and 7. Once all values are inserted, draw the tree representation of the final heap. Also

show the array representation of pq that stores its values.

(+2 points for Array with 9 cells.)

(+1 points if a[0] is ignored)

(+1 point for each of 9..5..7..2 in left to right)

(+1 point for binary heap tree with 9,5,7,2

properly placed

(+1 point for everything right)

(b) [8 pts.] With this same heap, call delMax twice in a row and insert the value 8. Now draw the tree

representation of the final heap. Also show the array representation of pq that stores its values.

(+3 point for final heap)

(+3 point for binary heap tree with 5 nodes properly

placed)

(+1 if a[0] is ignored)

(+1 if last three cells are empty “-“)

If Student makes a single mistake with insertion on part (a), try to recreate correct

answer for part (b). That is, if (a) has mistakes, assume (b) takes (a) as input.

Alternate version

asked to insert 6, 3, 9,

4, 2 and 8 into heap of size 9

Alternate version

asked to delmax twice

and insert 5.

Question 5. (20 pts.) Algorithm Question
The following is an example of a Gap array of size N=6, which contains N distinct integers in ascending

order from the range of N+1 integers [0, N]. As you can see, the integer “4” is the only value missing.

0 1 2 3 5 6
a[0] a[5]

To summarize, a Gap array of size N has the following properties:

 N ≥ 3 and all values in the array appear in strictly ascending order

 a[0]=0 and a[N-1]=N

 The array contains all but one of the integers from 0 to N.

(a) [15 pts.] Design an algorithm that computes gap, the missing integer from the range [0, N], which does

not appear in the Gap array. The order of growth (as a function of N) of the running time of your algorithm

must be log N. (To receive 7/15 pts on this part, the performance can be N). Write your answer in

pseudocode or Java.

(b) [5 pts.] In the worst case, what is the most number of array inspections your algorithm makes?

/** Return missing number, gap, in a[0, N-1]. */

public static int findGap (int[] a) {

There many ways to solve this problem, many of them discovered by students. Here is my implementation

with points:

+1 int lo = 1 // can avoid 0th and last one since they are known in advance

+1 int hi = a.length-2

+2 while lo <= hi // must be <= otherwise strange case happens

+1 mid = lo + (hi-lo)/2 // or any suitable midpoint computation

+3 if a[mid] > mid // gap is on the left….

+2 hi = mid-1 // so close in on it

 else

+2 lo = mid + 1 // gap is on the right

+3 return lo // could also be high + 1

Now how to compute number of comparisons? Each pass through, as with binary array search, there is a

comparison, thus:

(1 + Floor(log (N - 2)) – and you can review the posted code solution to see that this is confirmed. If you

start with lo=0 and hi=a.length-1, then (1 +Floor(log N))

Note: FOR 7/15 STUDENT COULD HAVE DONE SIMPLE LINEAR SEARCH UNTIL YOU SEE GAP, WHICH

WOULD REQUIRE N-2 COMPARISONS IN WORST CASE, or N-1 if you double check 1st and last.

