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1. Introduction

In [1] Hofri & Jacquet presented an analysis of algorithms tolocate saddle points in a random matrix, asked

by Donald E. Knuth in exercise 1.3.2-12 inThe Art of Computer Programming.

A random matrix has (fixed) dimensions ofn rows andm columns, and its elements are random variables,

denoted byX, assumed drawn independently from the same given completely continuous distributionF. To

remove ambiguity we sometimes writeFX.

A saddle point is defined as a matrix entry which is the minimalin its row and the maximal in its column,

using sharp inequalities, which also imply that at most one could exist in a matrix.

Brief reflection suggests two results:

(1) With a continuous distribution the veryexistenceof a saddle point is extremely unlikely.

(2) The distribution of the saddle point value, which we denote by R, when there is one, is very strongly

“pinched” around its mean.

The purpose of this note is to flesh out those observations, especially the second.

2. Calculations of moments

The distribution of the saddle point size is immediate from it definition above, leading to the probability

density function (conditional on the value being a saddle point), rc(x) = f (x)F(x)m−1 (1−F(x))n−1 , where
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f is the probability density function ofX. This is enough to provide us with

Lemma 1.: (a) The probability density function of the size of a saddle point is given by

r(x) =
1

Psp
f (x)F(x)m−1 (1−F(x))n−1 , (1)

(b) The probability of ann×m matrix with independent entries drawn from a continuous distribution to

have a saddle point ismnPsp, wherePsp is the probability that a saddle point occurs at a given position, and

is given by

Psp =
m+n

mn
(m+n

n

) = B(m,n), (2)

whereB(m,n) is the beta function.

Proof. The integral of the unconditional density, which is given byrc(x)/Psp, over the entire support ofF(x)

needs to be 1; we compute it with the change of integration variableF(x) → u:

1 =

∫

r(x)dx=
1

Psp

∫

f (x)F(x)m−1 (1−F(x))n−1dx=
1

Psp

∫ 1

0
um−1(1−u)n−1 du=

B(m,n)

Psp
.

This value forPsp was obtained by Knuth in [2], using purely combinatorial considerations.

Note: if F is not continuous, then quite different, and even strange things can happen. In particular, the

probability Psp may depend not only on the geometry as above, but also on details of the distributionF.

Here is an extreme case:X has only three possible valuesa < b < c, with probabilitiesp, q, r = 1− p−q,

respectively, then a saddle point can have only the valueb, and happen with probabilityPsp= mnqpm−1rn−1.

2.1 Using the Laplace method

The next evidence we calculate about the random variableR is its moments about the origin. Such moments

require evaluating the integrals

E[Ri] =
1

B(m,n)

∫

xi f (x)F(x)m−1 (1−F(x))n−1dx (3)

with the integration extending on the support ofF(x). When i is a positive integer there is no immediate

integral in general. Some particular cases are of course interesting, and can be computed exactly.

Example: If F is the uniform distribution, which we may limit to (0,1), theintegration is indeed immediate,

and we find thatE[R] = m/(m+n). Then, consistent with the notion of a “pinched” distribution, the variance

of R is smaller than that ofX by an order ofn: for X ∼U [0,1] we findV[R] = mn
(m+n)2(m+n+1)

.
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While Eq.(3) is not amenable usually to closed form evaluation, its appearance suggests immediately the

use of the Laplace method, which we should expect to be very precise so long as we could assume the

distributionF is smooth and the dimensions large. More precisely, we are looking now at

E[Ri] =
1

B(m,n)

∫

xi f (x)F(x)m−1 (1−F(x))n−1dx
def
=

∫ ∞

−∞
gi(x)e

−nh(x)dx, (4)

where

gi(x) =
xi f (x)

B(m,n)F(x)(1−F(x))
; h(x) = −α lnF(x)− ln(1−F(x)), (5)

and we make a natural, but in fact arbitrary choice, to letm= αn, so that the two dimensions of the matrix

grow at the same rate. The Laplace method calls for evaluating the minimum ofh(x). Two differentiations

of h(x) and solving forx in h′(x) = 0 reveal that the minimum position,x0, is given by

h′(x)= f (x)

(

1
1−F(x)

− α
F(x)

)

=⇒ x0 = F−1
(

α
1+ α

)

; h′′(x0)= f (x)2
(

1
(1−F(x0))2 +

α
F(x0)2

)

> 0.

(6)

Then we have the known first-order Laplace method result

E[Ri] ∼ gi(x0)e−nh(x0)

√

2π
nh′′(x0)

(7)

with

h(x0) =−α ln
α

1+ α
− ln

1
1+ α

= ln
(1+ α)1+α

αα ; gi(x0) =
xi

0(1+ α)2 f (x0)

αB(αn,n)
, h′′(x0) = f (x0)

2 (1+ α)3

α
.

(8)

It only remains to evaluate the ratio

η def
= e−nh(x0)/B(αn,n) =

(

αα

(1+ α)1+α

)n

×n

(

m+n−1
n

)

. (9)

This was done using the leading term in the Stirling approximation for the binomial coefficient, providing

η ≈
√

nα/2π(1+ α). When we substitute in Eq. (7) we get the compact result thatE[Ri] ∼ xi
0.

This is somewhat too compact: it fits some numerical evidencefor E[R], but for the variance it only claims

that it is ino(1), some lower, unspecified order ofn−1. That is the effect of the pinching process; it compares

well with the result we obtain for the uniform distribution,but we want more specific asymptotic information

about the process in a more general situation. We can show thefollowing.

Theorem 1.: Let Rbe the size of the saddle point value in ann×m matrix of independent entries satisfying

the probability lawF(x) with a completely continuous distribution, then its first two moments are given to

first order inn−1 as follows:

E[R]∼ x0−
1
n

αF
′′
(x0)

2(1+ α)3F ′
(x0)3 , E[R2] ∼ x2

0−
1
n

α(x0F
′′
(x0)−F

′
(x0))

(1+ α)3F ′
(x0)3 . (10)
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Proof sketch: To obtain such estimates a more delicate calculation then the first-order Laplace method,

that produces Eq. (7) is called for. The main contribution comes from refining the Laplace method, and we

also added lower order terms to the ratioη .

To improve the “Laplace” estimate we make a change of integration variable, defined byh(x)−h(x0)→ u2.

This keeps the convenience of working with Gaussian integrals. The main computational difficulty is then

solving for x in the equation
√

h(x)−h(x0) = u. This approach is essentially the same as presented in

[3, §3.8], and we did it withMAPLE, which allows us to experiment with higher order terms than one can

reasonably do by hand. WhenMAPLE is presented with such an equation, in which the left-hand side is a

power expansion aroundx0 (specifically, of theMAPLE type “series”), it solves forx by reversing the series

and producingx = x0 + ∑ j a ju j . The number of terms in this expansion is determined according to the

desired order of the final result, since the integration converts it to an expansion in powers ofn−1/2. For

the value ofr(x0) we added terms to the asymptotic development of the ratioη = e−nh(x0)/Psp, from Eq.(9)

beyond the first one given above. This expansion underlies many of our calculations, and can be seen in the

Appendix, in Eq.(20).

Since the integrand is given in terms of the unspecified distribution functionF(x), the expansions, and the

termsa j in solution series forx in terms ofu, are all expressed via the derivatives of this function, all

evaluated at the convenient pointx0.

Notes: (1) The “−” signs following x0 or x2
0 in Eq. (10) were chosen for convenience and do not mean

the moments are smaller than these values. Each of the following terms there can assume any sign; the first

derivative ofF is a density, hence positive, but the second derivative is not so obvious. In particular, for a

unimodal function, at least somewhat symmetrical distribution, we would expectF ′′(x0) to be positive for

α < 1 and negative for higher values, but things could be different.

(2) We calibrated our calculations by performing a similar computation with withg0(x) of Eq. (5). It should

provide, naturally, 1, but as we use fairly short expansions, since we only wanted few leading coefficients,

we used enough terms so that the lowest order term in our estimate ofE[R0] beyond 1 it produced was n

Θ(n−3) (which corresponds to even higher-order “error terms” in the higher order moments).

Several technical details are involved in the calculation;we posted theMAPLE program we used, with some

comments. at http://www.cs.wpi.edu/∼hofri/maple1 .

Once we have these moments we can calculate the variance, andfind that as expected it is indeed of a lower

order inn thanV[X]:

Corollary 1.: Under the conditions of Theorem 1 the variance of R is given by

V[R] =
1
n

α
(1+ α)3F ′(x0)2 +O

(

1
n2

)

. (11)

The explicit coefficient of the n−2 term in V[R] is given in the Appendix, in Eq.(18).
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This result corresponds to the intuition, that for moderatematrices the distribution of any saddle point value

gets pinched around its expected value, and tends to a degenerate random variable as the matrix grows.

Note moreover that the leading term inV[R] does not even “acknowledge” the variance of the elements: it

depends on the geometry (it is equal to 1/nh′′(x0), and is closely related to the curvature of the functionh(x)

at the critical point).

3. Computing the distribution

Since the leading term inV[R] is in θ(n−1), we should expect the random variable
√

nR to have a finite

variance, and the question arises: what is the shape of this scaled distribution, and in particular, what is the

functional form of its tail probabilities, that give the likelihood of deviation from the mean. We define the

nearly-centered∗ random variableT
def
=

√
n(R−x0); in this way, we letx0 essentially stand forE[R], but this

choice of centering means that 0 is the mode ofT, but it is its expectation only to zero-order inn−1.

While E[T] is in θ(n−1/2), its variance and standard deviation,σT—the natural unit for the scale of devia-

tions which appear most informative—are inθ(1), we want to handle both small deviations, in the scale of

the expectation, and more informative deviations, countedin a fewσT units.

We can cover both needs by computing

t(x)
def
= Pr[T > x] = Pr[

√
n(R−x0) > x] = Pr

[

R> x0 +
x√
n

]

x∈ O(1). (12)

With the density available from Eq.(1) we can write an expression fort(x)

t(x) =
1

Psp

∫

t≥x0+x/
√

n
f (t)F(t)m−1 (1−F(t))n−1dt. (13)

This is even less inviting than the previous integral, because now the lower limit of the integration depends

onn in a way that breaks the standard applicability of the Laplace method, except in the extreme case, when

we takex = 0. The integral we then compute is

t(x) =
∫

t≥x0

g(t)e−nh(t)dt, (14)

with h(t) the same as given in Eq. (5), andg(t) the same asg0(x) there. We have the same integral as in

Eq. (4) for i = 0, but extending only on the positive real line. The calculation is similar (except that we

∗Normally random variables are centered at their expectation, and we would need to useT ′ def
=

√
n(R−E[R]), but the centrality

of the pointx0 in our calculations as the mode of the distribution ofR, the fact that all developments are in terms of the expansion

of FX(x) at this point, and the nearness ofx0 to E[R], make this a natural choice.
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cannot use symmetry to cut on the number of contributing terms), and we find the reasonable result

t(0) = Pr[T ≥ 0] =
1
2

+
(α −1)

3
√

2nπα(1+ α)
+O

(

n−3/2
)

. (15)

Two further terms are given in the appendix, in Eq. (19). Notethat for a square matrixα = 1, andx0 is at

the median of the entry distribution. Then the mean, mode andmedian ofT are all zero, exactly.

In general we need to deal with the integral given in Eq. (13),which we transform as in the proof of Lemma

1 to the simpler looking integral

t(x) =
1

B(m,n)

∫ 1

u=v
um−1 (1−u)n−1du=

1
B(m,n)

∫ 1

u=v
g(u)e−nh(u)du, v

def
= F(x0 +x/

√
n). (16)

The simplicity consists in restricting the appearance of the arbitrary distributionFX(x) to the specification

of the lower integration limit. Otherwise we continue as when refining the Laplace method above, using

MAPLE at every step of the way to obtain

Theorem 2.: With the conditions of Theorem 1, the limiting tails of the distribution of the size of the scaled

saddle point elementT are Gaussian, forn→ ∞:

lim
n→∞

t(x) = 1−Φ
(

x
σT

)

=⇒ T → N (0,σ2
T). (17)

In §4.4 of the Appendix we provide the ingredients of the relatedasymptotic expansion. Note that it is

asymptotic inn→ ∞, while we keepx in O(1).

Proof sketch: The pattern of the following steps should now be familiar, ifnot all the details:

(1) Define the functionsh(u) = −α lnu− ln(1−u) and g(u) = 1/[B(αn,n)u(1−u)],

(2) Observe thath(u) is minimized atx0 = α/(1+α), and define the new integration variabley through the

relationh(u)−h(x0) = y2.

(3) Obtain the series solution of this equation, asu = s(y), and use it to expressg(u) anddu/dy, to yield an

integrand in terms ofy, denoted byI(y). The pointy1 =
√

h(v)−h(x0) is the lower limit for integration on

y; the upper limit is infinity, from limu→1 (− ln[uα(1−u)]).

(4) Evaluate the integral
∫

y≥y1
I(y)e−ny2

dy to get an expression in terms of[1− erf(
√

ny1)] and terms multi-

plied bye−ny2
1. Denote the result by I1, and multiply byη from Eq. (20) for the complete value.

(5) Express the integration limitv to second order asv = x0 + f x/
√

n+F ′′x2/(2n) where the derivatives are

evaluated atx0 as well.

(6) Substitutey1 in the results of step 4 while controlling the order of the expressions inn. Letting n→ ∞
produces the above result, since limn→∞

√
ny1 = x/σT

√
2, and 1− erf(t) = 2(1−Φ(t

√
2)).

TheMAPLE script for the above is in http://www.cs.wpi.edu/∼hofri/maple2 .
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4. Appendix

In order to simplify the presentation, the formula does not show explicitly that all functions are evaluated at

x0 = F−1(α/(1+ α)); f stands forF ′.

4.1 Expansion of V[R] to order n−2

V[R] =
1
n

α
(1+ α)3 f 2 −α

2 f 4(1+ α)2 +2α f F(3) +F ′′(4 f 2−4α2 f 2−7αF ′′)

2(1+ α)6 f 6n2 . (18)

4.2 Expansion of Eq. (15) to order n−5/2

t(0) ∼ 1
2

+
(α −1)

3
√

2πα(1+ α)n1/2
+

(α −1)(α2 +25α +1)

540(α(1+ α))3/2
√

2πn3/2
− (α −1)(1+ α + α2)(25α2 +73α +25)

6048(α(1+ α))5/2
√

2πn5/2
.

(19)

4.3 The value of the density function r(x) at its mode

r(x0) = f (x0)
(1+ α)2

α
η = f (x0)

(1+ α)2

α

√

nα
2π(1+ α)

(

1− 1+A
12An

+
(1+A)2

288A2n2 (20)

+
417A+139A3−15A2 +139

51840A3 n3 − (1+A)(571A3−15A2+1713A+571)
2488320A4 n4

− (163879A3 −331755A2 +491637A+163879)(1+A)2

209018880A5 n5 +O
(

n−6)
)

where the symbolA stands forα(1+ α).

4.4 Tails of the distribution of T =
√

n(R−x0)

We give the results as produced for Theorem 2. Refer to the sketch of the proof for terminology. We found

it more useful to give the ‘building blocks’ of the result, since putting it all together provides on paper
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unwieldy, and not particularly meaningful expressions.

y1 =

√

(1+ α)3

2α
f

x√
n

+
(1+ α)3/2

(

3F ′′α +2 f 2(α2−1)
)

6
√

2α3

x2

n
(21)

+
(1+ α)5/2

(

12F ′′α(α −1)+2 f 2α(1+ α)+7 f 2(1+ α3)
)

36
√

2α5/2
f

x3

n3/2
+O

(

n−2) .

Note that the first term ofy1 is x/σT
√

n.

I1 =
1√
n

{

1− erf(
√

ny1)√
2

(
√

π(1+ α)

α
+

1
12n

√
π(1+ α + α2)
√

α3(1+ α)

)

+
e−ny2

1

540(1+ α)α2 (22)

×
[

8

n3/2
(α −1)(α +2)(2α +1)+

1
√

nα(1+ α)

(

8y2
1

√

α(1+ α)(α −1)(α +2)(2α +1)

+ 45α
√

2y1(1+ α)(1+ α + α2)+180
√

α3(1+ α)(α2−1)

)]}

Finally, we note that the value ofη was read from Eq.(20) and that(1− erf(t)) = 2(1−Φ(t
√

2)).
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