
1

IMGD 1001:
3D Art

Outline
The Pipeline
Concept Art
2D Art
Animation, Tiles

IMGD 1001 2

,

3D Art (next)
Modeling, Texturing, Lighting,

Transformations

Polygonal Modeling Basics:
Primitives

 Primitives are basic shapes
 Most 3d packages have same primitives:

 Sphere, Cube, Cylinder, Plane
 Use for “broad strokes”

 Concentrate on primitives within object
 Ex: human body (ovals for shoulders cylinders for

IMGD 1001 3

 Ex: human body (ovals for shoulders, cylinders for
legs, sphere for head…)

 Components are parts that make up primitive
 Ex: vertices, edges, triangles, faces, elements
 Similar across all packages but terminology can vary

 Transformation allows moving, rotating, scaling
object or component

Polygonal Modeling Basics:
Normals
Face normals are at right angle to

polygon
 Tell what direction if facing, how to render,

how light will react

IMGD 1001 4

Viewed from other side, is invisible
 Fine if on inside (say, of solid cube)

When debugging, pay attention to
normals as well as polygons

Polygonal Modeling Basics:
Backface Culling
Toggles display of faces that point away

from view
When on, see through wireframe
When off, looks solid (not drawn)

IMGD 1001 5

Makes look less cluttered

Modeling Tools
 Certain tools and techniques used 80-90% of the

time
 Line Tool:

 Draw outline of object and extrude to get 3-d shape
 Ex: profile of car. Use line tool. Then, extrude

outward to get shape.

 Extrude:

IMGD 1001 6

 Extrude:
 Take component (often face), duplicating it, pulling

pushing or scaling to refine model
 Ex: take cube. Extrude face outward and smaller

 Cut:
 Subdivides faces and adds new faces

 Adjust:
 The artistic part of modeling. Try to capture form,

profile and character by moving vertices
 “Vertex surgery”, part of the technical manipulation

Based on Chapter 6.2, Introduction to Game Development

2

A Modeling Technique: Box Modeling
Done for character, but can apply to

other things
General idea:
Start with box, cylinder or other primitive

IMGD 1001 7

, y p
 Extrude, Cut, Adjust…
Get topology, proportions right
Once happy, refine until details complete

Box modeling: Quick Example
Reference
Box modeling: extrude, cut, adjust
Compare to reference
Sh d

IMGD 1001 8

Shade

Based on Chapter 6.2, Introduction to Game Development

Polygons and Limits
 3d Software renders scene of polygons like game

 But 3d software slow (Toy Story 1 frame / 15 hrs)
 Game is real time (30 frames / second)

 Need to limit polygons. How spent depends upon
world size and where needed.
 Ex: Medal of Honor versus Soul Caliber 2. MoH

IMGD 1001 9

details spread across world, less on avatars. SC2
can have detailed avatars since only 2 in one ring.

 Think of how many polygons each item needs.
Estimates, educated guesses. Then, make pass.
(Tools will often give count)
 Used wisely, can make detailed scenes with few (Ex:

2.5, page 24)
 Ch 6.2 assumes 4000 (typical for PS2 street fighting

game or hero in 3rd person action game)

Based on Chapter 2, Creating the Art of the Game, by Matthew Omernick

Polygon Reduction (1 of 4)
Being able to model without wasting

polygons important  takes practice
If a player will see face?
 Ex: oil barrel as cylinder. Will see bottom?

Nope then delete

IMGD 1001 10

Nope, then delete.

Are all faces necessary? Looks great,
yeah, but some can be removed.
 Ex: 12-sided cylinder still looks “round” with

8 sides? Then do it.

(Example exercise p30-31)

Based on Chapter 2, Creating the Art of the Game, by Matthew Omernick

Polygon Reduction (2 of 4)
Level-of-detail (LOD) meshes
Multiple versions of object, progressively

lower levels

When far away, use low level

IMGD 1001 11

Assume more objects in Field of View

When close, use higher level
Assume fewer objects in Field of View

Polygon Reduction (3 of 4)
 For entire level (ie- map with

environment), entire polygon count
matters
 Impacts amount of memory needed

 But only visible polygons rendered
 Rest are “culled” and not computed

IMGD 1001 12

 Rest are culled and not computed

Based on Chapter 6.2, Introduction to Game Development

Images courtesy of WildTangent

3

Polygon Reduction (4 of 4)
With low polygon modeling, much of the

detail is painted into the texture (next
topic!)

IMGD 1001 13

Images courtesy of WildTangent, model and texture by David Johnson.

Based on Chapter 6.2, Introduction to Game Development

Texture

Shader – define surface property of
object – how shiny, bumpy, how light
effects

IMGD 1001 14

Texture – bitmap plugged into
shader that defines image we want
to appear on object

Based on Chapter 6.4, Introduction to Game Development

Detail in Texture
Add depth, lines, etc. without

polygons
Box is 12 polygons, bricks would take

many more

IMGD 1001 15

y

(Taken from http://www.mostert.org/3d/3dpdzscenem.html)

Based on Chapter 6.4, Introduction to Game Development

Lighting

Can conjure feelings, emotions, even
change what you are seeing
Reveal (or hide) depth
 (Many books on traditional lighting)

IMGD 1001 16

 AR/ID 3150. LIGHT, VISION AND
UNDERSTANDING

Color, Mood

Based on Chapter 6.6, Introduction to Game Development

The Role of Color

IMGD 1001 17

RTX Red Rock

http://www.informit.com/articles/article.asp?p=174370

Color indicates danger

The Role of Lighting

IMGD 1001 18

Long shadows not only add to the atmosphere, but also help
break up repetition

http://www.informit.com/articles/article.asp?p=174370

4

Lighting Setup (1 of 3)

IMGD 1001 19

Key light – main source.
The Key light is placed next to
the camera, about 35-45
degree angle to the subject.
The angle is determined by
what kind of mood that you
want the scene to have.

http://www.3dtotal.com/team/Tutorials/Jenns3pt_tut/3ptlighting.asp

Lighting Setup (2 of 3)

IMGD 1001 20

Fill light – Brings out some
details out of shadow.
Place the Fill Light at a 90
degree angle from the Key
Light, usually slightly higher or
lower than the Key Light.

http://www.3dtotal.com/team/Tutorials/Jenns3pt_tut/3ptlighting.asp

Lighting Setup (3 of 3)

IMGD 1001 21

Backlight - Highlights edges,
pulls away from background.
Placed directly opposite the
camera and behind the
subject.

http://www.3dtotal.com/team/Tutorials/Jenns3pt_tut/3ptlighting.asp

Working with 3D Lights
Directional Lights – used for sunlight or

moonlight. Often as key light.
Predictable.

Spot Lights – focus beam on single
l ti G t t l

IMGD 1001 22

location. Great control.
Point Lights – single point in all

directions. Light bulbs, candles, etc.
Ambient Lights – spread everywhere,

equally. Uniform diffuse lights. Precise
control over illumination.

Based on Chapter 6.6, Introduction to Game Development

Example of Working with 3D
Lights

IMGD 1001 23

Ambient light

Based on Chapter 6.6, Introduction to Game Development

Effective Lighting Practices
(1 of 2)

Pools of light
– Don’t always
try to light evenly.
- Gives sense of

IMGD 1001 24

mystery

Pools of light in Indiana Jones:
The Emperor's Tomb

Based on Chapter 6.6, Introduction to Game Development

5

Effective Lighting Practices
(2 of 2)

Guide lights –
- Use light to
guide the player.

IMGD 1001 25

g p y
- Helps highlight
areas that are
accessible and
important to the
objectives.

Based on Chapter 6.6, Introduction to Game Development

Introduction to Transformations
A transformation changes an object's
Size (scaling)
Position (translation)
Orientation (rotation)

IMGD 1001 26

Transform object by applying sequence
of matrix multiplications to object
vertices

Hierarchical Transformations
Graphical scenes have object

dependencies
Many small objects
Attributes (position orientation etc)

IMGD 1001 27

Attributes (position, orientation, etc.)
depend on each other

base

lower arm

hammer

A Robot Hammer!

Hierarchical Transformations
Object dependency description using tree

structure

Base Root node

Object position and orientation

IMGD 1001 28

Lower arm

Upper arm

Hammer Leaf node

can be affected by its parent,
grand-parent, grand-grand-parent,
… nodes

Hierarchical representation
is known as Scene Graph

Hierarchical Transformations
 Relative Transformations - Specify the

transformation for each object relative to its
parent

IMGD 1001 29

Step 1:
Translate the base (and its
descendants) by (5, 0, 0);

x

z

y

x

z

yx

z

y

Hierarchical Transformations

Step 2:
Rotate the lower arm and (its
descendants) relative to the
base's local y axis by -90 degrees

IMGD 1001 30

x

z

y

x

z

y

x
z

y

6

Hierarchical Transformations

Base

Lower arm Rotate (90) about its local y

Translate (5, 0, 0)

IMGD 1001 31

Lower arm

Upper arm

Hammer

Rotate (-90) about its local y

Apply all the way
down

Apply all the way
down

Transformation uses Matrices
All transformations can be performed

using matrix/vector multiplication
Allows pre-multiplication of all matrices
Note: point (x y) needs to be

IMGD 1001 32

Note: point (x, y) needs to be
represented as (x, y, 1), also called
homogeneous coordinates

Point Representation
We use a column matrix (2x1 matrix) to

represent a 2D point









y

x

IMGD 1001 33

General form of transformation of a point
(x, y) to (x’, y’) can be written as:

cbyaxx '

feydxy '
or

x '

y '

1
















a b c

d e f

0 0 1














*

x

y

1















Translation
To reposition a point along a straight line
Given point (x, y) and translation

distance (tx, ty)
The new point: (x’ y’)

IMGD 1001 34

The new point: (x , y)

(x,y)

(x’,y’)

or

whereTPP ' 









'

'
'

y

x
P 










y

x
P 










y

x

t

t
T

x’ = x + tx
y’ = y + ty

3x3 2D Translation Matrix









'

'

y

x








y

x









y

x

t

t
 

use 3x1 vector

x’ = x + tx
y’ = y + ty

IMGD 1001 35

















1

'

'

y

x

















100

10

01

y

x

t

t

















1

y

x
 *

Note: it becomes a matrix-vector multiplication

Translation of Objects
How to translate an object with

multiple vertices?

IMGD 1001 36

Translate individual
vertices

7

2D Scaling
Scale: Alter object size by scaling

factor (Sx, Sy). i.e.,

x’ = x * Sx















 xSxx 0'

IMGD 1001 37

y’ = y * Sy

(1,1)

(2,2) Sx = 2, Sy = 2

(2,2)

(4,4)
















 ySyy 0'

3x3 2D Scaling Matrix


























y

x

Sy

Sx

y

x

0

0

'

'x’ = x * Sx
y’ = y * Sy

IMGD 1001 38


















































1100

00

00

1

'

'

y

x

Sy

Sx

y

x

2D Rotation
Default rotation center is origin (0,0)

  R t t t l k i

IMGD 1001 39

Rotate counter clockwise

Rotate clockwise





2D Rotation (cont.)

(x,y)  Rotate about the origin by 

(x’, y’) (x,y)

(x’,y’)



IMGD 1001 40

How to compute (x’, y’) ?

x = r*cos()
y = r*sin()




r

x' = r*cos( +)
y' = r*sin( +)

2D Rotation (cont.)
Using trigonometric identities

(x,y)

(x’,y’)

 r’ () i ()

 sinsincoscos)cos(

 sincoscossin)sin(

IMGD 1001 41


rx’ = x cos() – y sin()

y’ = x sin() + y cos()

Matrix form?
















 









y

x

y

x

)cos()sin(

)sin()cos(

'

'




3x3 2D Rotation Matrix

(x,y)

(x’,y’)




r
















 









y

x

y

x

)cos()sin(

)sin()cos(

'

'




IMGD 1001 42

































 


















1100

0)cos()sin(

0)sin()cos(

1

'

'

y

x

y

x




8

2D Rotation
How to rotate an object with multiple

vertices?

IMGD 1001 43

Rotate individual
Vertices



Arbitrary Rotation Center
 To rotate about arbitrary point P = (Px, Py) by
:
 Translate object by T(-Px, -Py) so that P coincides

with origin
 Rotate the object by R()
 Translate object back: T(Px Py)

IMGD 1001 44

 Translate object back: T(Px, Py)

 In matrix form
 T(Px,Py) R() T(-Px,-Py) * P

 Similar for arbitrary scaling anchor

















































 


































1100

10

01

100

0)cos()sin(

0)sin()cos(

100

10

01

1

'

'

y

x

Py

Px

Py

Px

y

x




Composing Transformations
 Composing transformations

 Applying several transforms in succession to form one
overall transformation

 Example
 M1 X M2 X M3 X P
where M1 M2 M3 are transform matrices applied to P

IMGD 1001 45

where M1, M2, M3 are transform matrices applied to P

 Be careful with the order!
 For example

 Translate by (5, 0), then rotate 60 degrees is NOT same as
 Rotate by 60 degrees, then translate by (5, 0)

