IMGD-1001
The Game Development Process
Class 15
Thursday, 24 September 2009

Compression (positive pressure)
Rarefaction (negative pressure)

Amount of pressure change $=$ Amplitude

Varies continuously over time

Rate of vibration/pressure change $=\underline{\text { Frequency }}$

Measured in cycles per second (Hertz or Hz)

Transducers: Convert one type of energy to another All transducers introduce distortion

Frequency range of human hearing: Approximately 20 to $20,000 \mathrm{~Hz}$

[^0]

Digital recording and playback

Extremely accurate, low noise and distortion Almost immeasurable wow or flutter Easily edited and manipulated Essentially perfect replication

Digital sampling ("digitizing")

- Sample rate
- Number of samples taken per second
- Also measured in Hertz
- Sample resolution
- Range of numbers used to describe each sample
- Measured in binary bits
- 8 bits $=256$ values (± 127)
- 16 bits $=65,536$ values $(\pm 32 \mathrm{~K})$
- 24 bits $=16,777,216$ values

How often to sample?

- Depends on desired frequency range
- Nyquist frequency = Sample rate required to fully express a signal
- 2X maximum required frequency
- $2 \mathrm{X} 20 \mathrm{kHz}=40 \mathrm{kHz}$ minimum sample rate to represent full human range

How much to sample?

- Depends on desired dynamic range
- Dynamic range $=$ Difference
between softest and loudest sounds
- Measured in decibels (dB); $1 \mathrm{~dB}=$ faintest perceptible sound
- Real-world range: 10-20 dB (anechoic chamber) to 140 dB (beside jet engine)
- Each bit of sampling resolution approximately doubles dynamic range

Home audio formats

- Compact Disc
- Sample rate: 44.1 kHz
- Sample resolution: 16 bits
- Dynamic range: >90 dB
- Two channels for stereo
- "CD quality"

- HD/BluRay DVD
- Up to 8 channels 96 kHz 24 -bit audio
- Dynamic range: $>120 \mathrm{~dB}$

"CD quality" data rate

- 44,100 samples per second
- 16 bits (2 bytes) per sample
- 2 channels
- $44,100 \times 2 \times 2=176,400$ bytes $/$ sec or 10.584 MB per minute
- Typical pop song 30-40 MB if uncompressed

Compressed digital audio

- Lossless compression
- Preserves data perfectly
- Compression ratio: 2:1 typical
- Lossy compression
- Discards some data to increase compression ratio
- The trick is: What to throw away?

The game changer: MP3 (1994)

- Lossy compression algorithm based on auditory masking
- Loud low-frequency sounds can make softer high-frequency sounds inaudible
- Perceptual coding: Throw away high frequencies that "can't be heard anyway"
- Compression ratio: 10:1 or better
- Pop song becomes a 3 MB file

The MP3 Phenomenon

- First Web appearance: Late '94
- Winamp, mp3.com (Summer '97)
- First portable players (Spring '98)
- 32 MB Eiger MPMan F10, Rio PMP300
- Napster (June '99)
- Created by Shawn Fanning (19),

Northeastern University

Game audio: Early days

- Apple II and PC: Click the speaker
- Atari, C64, early consoles: FM synths
- Macintosh (January 1984)
- AdLib PC sound card (1976)
- Creative Labs Sound Blaster (1989)

Game audio: Today

- All game audio is digital
- Music, SFX, VO delivered pre-rendered
- Typical assets
- .wav (bigger, no decoding)
- .mp3 (small, decoded, requires license)
- .ogg (small, decoded, no license)
- .flac (smaller, decoded)
\square Real-time mixing, effects, spatialization

Tonight's assignment:

Continue reading Rollings/Morrs
Continue Project 4

Questions?
Friday:
Game design

[^0]: Amplitude of signal is measured (and usually recorded) at precise time intervals, converted to stream of numbers

