
1

IMGD 1001:
Debugging

Debugging Introduction (1 of 2)
Debugging is methodical process for 

removing mistakes in a program
So important, whole set of tools to help.  

Called "debuggers"

2

Called debuggers
Trace code, print values, profile
 Integrated Development Environments 

(IDEs) (such as Flash and Game Maker) 
have one built in

A good debugger is really useful...

Based on Chapter 3.6, Introduction to Game Development
IMGD 1001

Debugging Introduction (2 of 2)
 But debugging still frustrating
 Beginners don't know how to proceed
 Even advanced can get "stuck"

 Don't know how long it takes to find
 Variance can be high

3

 Variance can be high
 But can treat them in aggregate for predictions

What are some tips?
What methods can be applied?

Based on Chapter 3.6, Introduction to Game Development
IMGD 1001

Outline
Five-step debugging process
Prevention
Debugging tips

4IMGD 1001

Similar steps to Scientific Method
Evaluation
Conjecture
Deduction
T t

5

Test

Lather, rinse, repeat

Let’s do one

IMGD 1001

The Problem: Bubble Sort
We need a routine to sort a list
Algorithm: 
Compare adjacent entries in the list
 If they’re out of order, swap them

6

Move on to the next pair
Repeat until the list is sorted

Yes, this is vague
But you might be lucky to get this much 

description of an algorithm in your code!

IMGD 1001



2

Work Through …

7

Consider array:
3 5 1 2

Evaluate, then Conjecture/Deduction, 
then Fix, then Test

IMGD 1001

Step 1: Reproduce the
Problem Consistently
Find case where always occurs
 Things like "Sometimes game crashes after I 

kill the boss" don’t help much

Identify steps to get to bug

8

g g
 Ex: start single player, room 2, jump to top 

platform, attack left,  …
 Produces systematic way to reproduce

Consider record/playback
Console developers may use camcorder!

IMGD 1001

Step 2: Collect Clues
 Collect clues as to where is bug

 Clues suggest where problem might be
 Ex: if crash using projectile, what about code that 

handles projectile creation and shooting?

 And beware that some clues are false
E  if b  f ll  l i   thi k th   

9

 Ex: if bug follows explosion, may think they are 
related, but may be from something else

 Don't spend too long - get in and observe
 Ex: crash when shooting arrow. See reference pointer 

from arrow to unit that shot arrow should get 
experience points, but it is NULL

 That's the bug, yes, but why is it NULL?

IMGD 1001

Step 3: Pinpoint Error
1) Propose a hypothesis and prove or disprove

 Ex: suppose arrow pointer corrupted during flight. 
 Add code to print out values of arrow in air.
 But equals same value that crashes.
 Hypothesis is wrong.  But now have new clue!
 Ex: suppose unit deleted before experience points added.  Print 

out values of all units before fire and after all deleted.
 Yep, that's it!

10

 Yep, that s it!

2) Binary-search method (note, can use in conjunction with 
hypothesis test above, too)
 Sherlock Holmes: "when you have eliminated the impossible, 

whatever remains, however improbably, must be the truth."
 Setting breakpoints, look at all values, until discover bug
 The "divide" part means break it into smaller sections

 Ex: if crash, put breakpoint ½ way.  Is it before or after?  Repeat.
 Look for anomalies, NULL or NaN values

IMGD 1001

Step 4: Repair the Problem
 Propose solution.  Exact solution depends upon 

stage of problem
 Ex: late in development cannot change data 

structures.  Too many other parts use it!
Worry about "ripple" effects

11

 Ideally, want original coder to fix
 If not possible, at least try to talk with original 

coder for insights

 Consider other similar cases, even if not yet 
reported
 Ex: other projectiles may cause same problem as 

arrows did

IMGD 1001

Step 5: Test Solution
Obvious, but can be overlooked if 

programmer is "sure" they have fix
 Programmer can be wrong!

So, test that the solution repairs bug

12

, p g
Best done by independent tester

Test if other bugs introduced
Beware of "ripple" effect

IMGD 1001



3

Debugging Prevention
 Use consistent style, variable names
 Indent code, use comments
 Always initialize variables when declared
 Avoid hard-coded constants

 They make code brittle

13

 Add infrastructure, tools to assist
 Alter game variables on fly (speed up testing)
 Visual diagnostics  (maybe on avatars)
 Log data (events, units, code, time stamps)

 Avoid identical code
 Harder to fix if bug found
 Use a script/function

 Verify coverage (test all code) when testing

IMGD 1001

Debugging Tips (1 of 3)
 Fix one thing at a time

 Don’t try to fix multiple problems

 Change one thing at a time
 Tests hypothesis.  Change back if doesn't fix problem!

 Start with simpler case that works
 Then add more complex code  one thing at a time

14

 Then add more complex code, one thing at a time

 Question your assumptions
 Don’t even assume simple stuff works, or "mature" 

products
 Ex: libraries and tutorials can have bugs

 Minimize interactions
 Systems can interfere, or make slower, so isolate the bug 

to avoid complications

IMGD 1001

Debugging Tips (2 of 3)
Minimize randomness
 Ex: can be caused by random seed or player 

input.  Fix input (script player) so reproducible

 Break complex calculations into steps
 May be equation that is at fault or "cast" badly

15

 Check boundary conditions
 Classic "off by one" for loops, etc.

 Use debugger
 Breakpoints, memory watches, stack …

 Check code recently changed
 If bug appears, may be in latest code (not even 

yours!)
IMGD 1001

Debugging Tips (3 of 3)
 Take a break!

 Too close, can't see it
 Provide fresh prospective

 Explain bug to someone else
 Helps retrace steps  and others provide alternate 

16

 Helps retrace steps, and others provide alternate 
hypotheses

 Debug with partner
 Provides new techniques
 Same advantage with code reviews, peer 

programming

 Get outside help
 Tech support for consoles, Web examples, libraries, …

IMGD 1001

Tough Debugging Scenarios and 
Patterns (1 of 3)
 Bug in Release but not in Debug

 Often in initialized code
 Or in optimized code

 Turn on optimizations one-by-one

 Bug in Hardware but not in Dev Kit
 Usually dev kit has extra memory (for tracing  etc )

17

 Usually dev kit has extra memory (for tracing, etc.)
 Suggests memory problem (pointers), stack overflow, not 

checking memory allocation

 Bug Disappears when Changing Something Innocuous
 Likely timing problem (race condition) or memory problem
 Even if looks like gone, probably just moved

 Keep looking!

Based on Chapter 3.5, Introduction to Game Development
IMGD 1001

Tough Debugging Scenarios and 
Patterns (2 of 3)
 Truly Intermittent Problems
 Maybe best you can do is grab all data 

values (and stack, etc.) and look at ("Send 
Error Report")

 Unexplainable Behavior

18

 Unexplainable Behavior
 Ex: values change without touching.  

Usually memory problem.  Could be from 
supporting system. Retry, rebuild, reboot, 
re-install.

Based on Chapter 3.5, Introduction to Game Development
IMGD 1001



4

Tough Debugging Scenarios and 
Patterns (3 of 3)
 Bug in Someone Else’s Code
 “No it is not.”  Be persistent with own code first.
 Find concrete support for your claim!

 Small reproduction case
 It's not in hardware

 Ok  very  rarely  but expect it not to be  unless you 

19

 Ok, very, rarely, but expect it not to be, unless you 
are designing the hardware too!

 Download latest firmware, drivers
 If really is, best bet is to help isolate to speed 

others in fixing it
 Meanwhile, you probably need to find a 

workaround or alternative
 There is usually more than one way to write the 

code you want!
IMGD 1001


