
1

The Game Development
Process

Game Programming

Outline

• Teams and Processes
• Select Languages
• Debugging
• Misc (as time allows)

– AI
– Multiplayer

2

Introduction

• Used to be programmers created games
– But many great programmers not great

game makers
• With budget shift, emphasis has shifted

– Game content creators are artist and
designers

• Programmers can be thought of as
providing services for content
– But fate of entire game rests in their hands

Based on Chapter 3.1, Introduction to Game Development

Programming Areas – Game Code
• Everything directly related to game itself

– How camera behaves, score is kept, AI for
bots, etc.

• Often in scripting language (rest is in C++,
more on languages next)
– Produce faster iterations
– Allow technical designers/artists to change

behaviors
– More appropriate language for domain (ex:

AI probably not easiest in C++)

Based on Chapter 3.1, Introduction to Game Development

3

Programming Areas – Game Engine

• Support code that is not game specific
– More than just drawing pretty 3d graphics

(that is actually the graphics engine, part of
the game engine)

– Isolate game code from hardware
• ex: controller, graphics, sound
•Allows designers to concentrate on game

– Common functionality needed across game
•Serialization, network communication,

pathfinding, collision detection

Based on Chapter 3.1, Introduction to Game Development

Programming Areas – Tools

• Most involve content creation
– Level editors, particle effect editors, sound editors

• Some to automate repetitive tasks (ex: convert
content to game format)
– These usually have no GUI

• Sometimes written as plug-ins for off-the-shelf
tools
– Ex: extensions to Maya or 3dStudio or Photoshop

• If no such extension available, build from scratch

Based on Chapter 3.1, Introduction to Game Development

4

Programming Team Organization

• Programmers often specialize
– Graphics, networking, AI

• May be generalists, know something about
everything
– Often critical for “glue” to hold specialists together
– Make great lead programmers

• More than 3 or 4, need some organization
– Often lead programmer, much time devoted to

management
• More than 10 programmers, several leads

(graphics lead, AI lead, etc.)

Based on Chapter 3.1, Introduction to Game Development

Software Methodologies

• Code and Fix
• Waterfall
• Iterative
• Agile

• (Take cs3733, Software Engineering)

5

Methodologies – Code and Fix

• Really, lack of a methodology
– And all too common

• Little or no planning, diving straight into
implementation

• Reactive, no proactive
• End with bugs. If bugs faster than can fix, “death

spiral” and may be cancelled
• Even those that make it, must have “crunch time”

– viewed after as badge of honor, but results in
burnout

Based on Chapter 3.1, Introduction to Game Development

Methodologies - Waterfall

• Plan ahead
• Proceed through various planning steps

before implementation
– requirements analysis, design,

implementation, testing (validation),
integration, and maintenance

• The waterfall loops back as fixes required
• Can be brittle to changing functionality,

unexpected problems in implementation
– Going back to beginning

Based on Chapter 3.1, Introduction to Game Development

6

Methodologies - Iterative

• Develop for a period of time (1-2 months),
get working game, add features
– Periods can coincide with publisher

milestones
• Allows for some planning

– Time period can have design before
implementation

• Allows for some flexibility
– Can adjust (to new technical challenges or

producer demands)

Based on Chapter 3.1, Introduction to Game Development

Methodologies - Agile

• Admit things will change, avoid looking too
far in the future

• Value simplicity and the ability to change
• Can scale, add new features, adjust
• Relatively new for game development
• Big challenge is hard to convince publishers

Based on Chapter 3.1, Introduction to Game Development

7

Common Practices – Version Control

• Database containing files and past history
of them

• Central location for all code
• Allows team to work on related files

without overwriting each other’s work
• History preserved to track down errors
• Branching and merging for platform

specific parts

Based on Chapter 3.1, Introduction to Game Development

Common Practices – Quality (1 of 2)

• Code reviews – walk through code by other
programmer(s)
– Formal or informal
– “Two eyes are better than one”
– Value is programmer aware others read

• Asserts
– Force program to crash to help debugging

•Ex: Check condition is true at top of code,
say pointer not NULL before following

– Removed during release

Based on Chapter 3.1, Introduction to Game Development

8

Common Practices – Quality (2 of 2)
• Unit tests

– Low level test of part of game (Ex: see if physics computations
correct)

– Tough to wait until very end and see if bug
– Often automated, computer runs through combinations
– Verify before assembling

• Acceptance tests
– Verify high-level functionality working correctly (Ex: see if

levels load correctly)
• Note, above are programming tests (ie- code, technical). Still

turned over to testers that track bugs, do gameplay testing.
• Bug database

– Document and track bugs
– Can be from programmers, publishers, customers
– Classify by severity
– Keeps bugs from falling through cracks
– Helps see how game is progressing

Based on Chapter 3.1, Introduction to Game Development

Outline

• Teams and Processes (done)
• Select Languages (next)
• Debugging
• Misc (as time allows)

– AI
– Multiplayer

9

C++ (1 of 3)
• Mid-late 1990’s, C was language of choice
• Since then, C++ language of choice for games

– First commercial release in 1985 (AT&T)
• List pros (+) and cons (-)
• (Take cs2102 OO Design Concepts or cs4233 OOAD)
+ C Heritage

– Learning curve easier
– Compilers wicked fast

+ Performance
– Used to be most important, but less so (but still for core

parts)
– Maps closely to hardware (can “guess” what assembly

instructions will be)
– Can not use features to avoid cost, if want (ie- virtual

function have extra step but don’t have to use)
– Memory management controlled by user

Based on Chapter 3.2, Introduction to Game Development

C++ (2 of 3)

+ High-level
– Classes (objects), polymorphism, templates,

exceptions
– Especially important as code-bases enlarge
– Strongly-typed (helps reduce errors)

• ex: declare before use, and const
+ Libraries

– C++ middleware readily available
• OpenGL, DirectX, Standard Template Library

(containers, like “vectors”, and algorithms, like “sort”)

Based on Chapter 3.2, Introduction to Game Development

10

C++ (3 of 3)
- Too Low-level

– Still force programmer to deal with low-level issues
• ex: memory management, pointers

- Too complicated
– Years of expertise required to master (other languages

seek to overcome, like Java and C#)
- Lacking features

– No built-in way to look at object instances
– No built-in way to serialize
– Forces programmer to build such functionality (or learn

custom or 3rd party library)
- Slow iteration

– Brittle, hard to try new things
– Code change can take a looong time as can compile

Based on Chapter 3.2, Introduction to Game Development

C++ (Summary)

• When to use?
– Any code where performance is crucial

•Used to be all, now game engine such as
graphics and AI

•Game-specific code often not C++
– Legacy code base, expertise
– When also use middle-ware libraries in C++

• When not to use?
– Tool building (GUI’s tough)
– High-level game tasks (technical designers)

Based on Chapter 3.2, Introduction to Game Development

11

Java (1 of 3)

• Java popular, but only recently so for games
– Invented in 1990 by Sun Microsystems

+ Concepts from C++ (objects, classes)
– Powerful abstractions

+ Cleaner language
– Memory management built-in
– Templates not as messy
– Object functions, such as virtualization

+ Code portability (JVM)
(Hey, draw picture)

+ Libraries with full-functionality built-in

Based on Chapter 3.2, Introduction to Game Development

Java (2 of 3)

- Performance
– Interpreted, garbage collection, security
– So take 4x to 10x hit
+ Can overcome with JIT compiler, Java

Native Interface (not interpreted)
- Platforms

– JVM, yeah, but not all games (most PC
games not, nor consoles)

+ Strong for browser-games, mobile

Based on Chapter 3.2, Introduction to Game Development

12

Java (3 of 3)

• Used in:
– Downloadable/Casual games

• PopCap games
– Mummy Maze, Seven Seas, Diamond Mine

• Yahoo online games (WorldWinner)
– Poker, Blackjack

– PC
• Star Wars Galaxies uses Java (and simplified Java

for scripting language)
• You Don’t Know Jack and Who Wants to be a

Millionaire all Java

Based on Chapter 3.2, Introduction to Game Development

Scripting Languages (1 of 3)
• Not compiled, rather specify (script) sequence of actions
• Most games rely upon some

– Trigger a few events, control cinematic
• Others games may use it lots more

– Control game logic and behavior (Game Maker has GML)
+ Ease of development

– Low-level things taken care of
– Fewer errors by programmer

- But script errors tougher, often debuggers worse
– Less technical programming required

• Still, most scripting done by programmers
– Iteration time faster (don’t need to re-compile all code)
– Can be customized for game (ex: just AI tasks)

Based on Chapter 3.2, Introduction to Game Development

13

Scripting Languages (2 of 3)
+ Code as an asset

– Ex: consider Peon in C++, with behavior in C++, maybe art as an
asset. Script would allow for behavior to be an asset also
• Can be easily modified, even by end-user in “mod”

- Performance
– Parsed and executed “on the fly”

• Hit could be 10x or more over C++
– Less efficient use of instructions, memory management

-Tool support
– Not as many debuggers, IDEs

• Errors harder to catch
- Interface with rest of game

– Core in C++, must “export” interface
• Can be limiting way interact

– (Hey, draw picture)

Based on Chapter 3.2, Introduction to Game Development

Scripting Languages (3 of 3)

• Python
– Interpreted, OO, many libraries, many tools
– Quite large (bad when memory constrained)
– Ex: Blade of Darkness, Earth and Beyond, Eve Online,

Civilization 4 (Table 3.2.1 full list)
• Lua (pronounced: Loo-ah)

– Not OO, but small (memory). Embed in other programs.
Doesn’t scale well.

– Ex: Grim Fandango, Baldur’s Gate, Far Cry (Table 3.2.2
full list)

• Others:
– Ruby, Perl, JavaScript
– Custom: GML, QuakeC, UnrealScript

• Implementing own tough, often performs poorly so careful!

Based on Chapter 3.2, Introduction to Game Development

14

Macromedia Flash (1 of 2)

• More of a platform and IDE (ala Game Maker) than a
language (still, has ActionScript)
– “Flash” refers to 1) authoring environment, 2) the player,

or 3) the application files
– Released 1997, popular with Browser bundles by 2000

• Advantages
– Wide audience (nearly all platforms have Flash player)
– Easy deployment (embed in Web page)
– Rapid development (small learning curve, for both artists

and programmers)
• Disadvantages

– 3D games
– Performance (interpreted, etc.)

Based on Chapter 3.3, Introduction to Game Development

Macromedia
Flash (2 of 2)

• Timeline Based
– Frames and Frame rate (like animations)
– Programmers indicate when (time) event occurs (can

occur across many frames)
• Vector Engine

– Lines, vertices, circles
– Can be scaled to any size, still looks crisp

• Scripting
– ActionScript similar to JavaScript
– Classes (as of Flash v2.0)
– Backend connectivity (load other Movies, URLs)

Based on Chapter 3.3, Introduction to Game Development

15

Outline

• Teams and Processes (done)
• Select Languages (done)
• Debugging (next)
• Misc (as time allows)

– AI
– Multiplayer

Debugging Introduction

• New Integrated Development Environments (IDEs)
have debugging tools
– Trace code, print values, profile

• But debugging frustrating
– Beginners not know how to proceed
– Even advanced can get “stuck”

• Don’t know how long takes to find
– Variance can be high

• Mini-outline
– 5-step debugging process
– Debugging tips
– Touch scenarios and patterns
– Prevention

Based on Chapter 3.5, Introduction to Game Development

16

Step 1: Reproduce the Problem
Consistently

• Find case where always occurs
– “Sometimes game crashes after kill boss”

doesn’t help much
• Identify steps to get to bug

– Ex: start single player, skirmish map 44,
find enemy camp, use projectile weapon …

– Produces systematic way to reproduce

Based on Chapter 3.5, Introduction to Game Development

Step 2: Collect Clues

• Collect clues as to bug
– But beware that some clues are false

• Ex: if bug follows explosion may think they are
related, but may be from something else

– Ex: if crash using projectile, what about that code
that makes it possible to crash?

• Don’t spend too long, get in and observe
– Ex: see reference pointer from arrow to unit that

shot arrow should get experience points, but it is
NULL

– That’s the bug, but why is it NULL?

Based on Chapter 3.5, Introduction to Game Development

17

Step 3: Pinpoint Error
• Propose a hypothesis and prove or disprove

– Ex: suppose arrow pointer corrupted during flight. Add
code to print out values of arrow in air. But equals same
value that crashes. Wrong. But have new clue.

– Ex: suppose unit deleted before experience point. Print
out values of all in camp before fire and all deleted. Yep,
that’s it.

• Or, divide-and-conquer method (note, can use in
conjunction with hypo-test above, too)
– Sherlock Holmes “when you have eliminated the

impossible, whatever remains, however improbably, must
be the truth”

– Setting breakpoints, look at all values, until discover bug
– The “divide” part means break it into smaller sections

• Ex: if crash, put breakpoint ½ way. Is it before or after?
Repeat.

– Look for anomalies, NULL or NAN values

Based on Chapter 3.5, Introduction to Game Development

Step 4: Repair the Problem
• Propose solution. Exact solution depends upon

stage of problem.
– Ex: late in code cannot change data structures. Too

many other parts use.
– Worry about “ripple” effects.

• Ideally, want original coder to fix. At least, talk
with original coder for insights.

• Consider other similar cases, even if not yet
reported
– Ex: other projectiles may cause same problem as

arrows did

Based on Chapter 3.5, Introduction to Game Development

18

Step 5: Test Solution

• Obvious, but can be overlooked if
programmer is sure they have fix (but
programmer can be wrong!)

• So, test that fix repairs bug
– Best by independent tester

• Test if other bugs introduced (beware
“ripple” effect)

Based on Chapter 3.5, Introduction to Game Development

Debugging Tips (1 of 3)

• Question your assumptions – don’t even assume
simple stuff works, or “mature” products
– Ex: libraries can have bugs

• Minimize interactions – systems can interfere,
make slower so isolate the bug to avoid
complications

• Minimize randomness –
– Ex: can be caused by random seed or player input.

Fix input (script player) so reproducible

Based on Chapter 3.5, Introduction to Game Development

19

Debugging Tips (2 of 3)
• Break complex calculations into steps – may

be equation that is at fault or “cast” badly
• Check boundary conditions – classic “off by

one” for loops, etc.
• Disrupt parallel computations – “race

conditions” if happen at same time (cs3013)
• Use debugger – breakpoints, memory

watches, stack …
• Check code recently changed – if bug

appears, may be in latest code (not even
yours!)

Based on Chapter 3.5, Introduction to Game Development

Debugging Tips (3 of 3)
• Take a break – too close, can’t see it.

Remove to provide fresh prospective
• Explain bug to someone else – helps retrace

steps, and others provide alternate
hypotheses

• Debug with partner – provides new
techniques
– Same advantage with code reviews, peer

programming
• Get outside help – tech support for

consoles, libraries, …
Based on Chapter 3.5, Introduction to Game Development

20

Tough Debugging Scenarios and
Patterns (1 of 2)

• Bug in Release but not in Debug
– Often in initialized code
– Or in optimized code

• Turn on optimizations one-by-one
• Bug in Hardware but not in Dev Kit

– Usually dev kit has extra memory (for tracing, etc.).
Suggest memory problem (pointers), stack overflow,
not checking memory allocation

• Bug Disappears when Changing Something
Innocuous
– Likely timing problem (race condition) or memory

problem
– Even if looks like gone, probably just moved. So

keep looking

Based on Chapter 3.5, Introduction to Game Development

Tough Debugging Scenarios and
Patterns (2 of 2)

• Truly Intermittent Problems
– Maybe best you can do is grab all data values (and

stack, etc) and look at (“Send Error Report”)
• Unexplainable Behavior

– Ex: values change without touching. Usually memory
problem. Could be from supporting system. Retry,
rebuild, reboot, re-install.

• Bug in Someone Else’s Code
– “No, it is not”. Be persistent with own code first.
– It’s not in hardware. (Ok, very, very rarely, but

expect it not to be). Download latest firmware,
drivers.

– If really is, best bet is to help isolate to speed
them in fixing it.

Based on Chapter 3.5, Introduction to Game Development

21

Debugging Prevention (1 of 2)
• Understand underlying system

– Knowing language not enough
– Must understand underlying system

• At least one level down
– Engine for scripters
– OS for engine

• Maybe two layers down (hardware, assembly)
• Add infrastructure, tools to assist

– Make general
– Alter game variables on fly (speed up)
– Visual diagnostics (maybe on avatars)
– Log data (events, units, code, time stamps)
– Record and playback capability

Based on Chapter 3.5, Introduction to Game Development

Debugging Prevention (2 of 2)
• Set compiler on highest level warnings

– Don’t ignore warnings
• Compile with multiple compilers

– See if platform specific
• Write own memory manager (for console games,

especially, since tools worse)
• Use asserts
• Always initialize when declared
• Indent code, use comments
• Use consistent style, variable names
• Avoid identical code – harder to fix if bug
• Avoid hard-coded (magic numbers) – makes brittle
• Verify coverage (test all code) when testing

Based on Chapter 3.5, Introduction to Game Development

22

Outline

• Teams and Processes (done)
• Select Languages (done)
• Debugging (done)
• Misc (as time allows)

– AI (next)
– Multiplayer

Introduction to AI

• Opponents that are challenging, or allies
that are helpful
– Unit that is credited with acting on own

• Human-level intelligence too hard
– But under narrow circumstances can do

pretty well (ex: chess and Deep Blue)
• Artificial Intelligence (around in CS for

some time)

Based on Chapter 5.3, Introduction to Game Development

23

AI for CS different than AI for Games
• Must be smart, but purposely flawed

– Loose in a fun, challenging way
• No unintended weaknesses

– No “golden path” to defeat
– Must not look dumb

• Must perform in real time (CPU the bottleneck)
• Configurable by designers

– Not hard coded by programmer
• “Amount” and type of AI for game can vary

– RTS needs global strategy, FPS needs modeling of
individual units at “footstep” level

– RTS most demanding: 3 full-time AI programmers
– Puzzle, street fighting: 1 part-time AI programmer

Based on Chapter 5.3, Introduction to Game Development

AI for Games – Mini Outline

• Introduction (done)
• Agents (next)
• Finite State Machines
• Common AI Techniques
• Promising AI Techniques

24

Game Agents (1 of 2)
• Most AI focuses around game agent

– think of agent as NPC, enemy, ally or neutral
• Loops through: sense-think-act cycle

– Acting is event specific, so talk about sense+think
• Sensing

– Gather current world state: barriers, opponents,
objects

– Needs limitations
• Avoid “cheating” by looking at game data
• Typically, same constraints as player (vision, hearing

range)
– Often done simply by distance direction (not

computed as per actual vision)
– Model communication (data to other agents) and

reaction times (can build in delay)

Based on Chapter 5.3, Introduction to Game Development

Game Agents (2 of 2)

• Thinking
– Evaluate information and make decision
– As simple or elaborate as required
– Two ways:

• Precoded expert knowledge, typically hand-
crafted “if-then” rules + randomness to make
unpredictable

•Search algorithm for best (optimal) solution

Based on Chapter 5.3, Introduction to Game Development

25

Game Agents – Thinking (1 of 3)

• Expert Knowledge
– finite state machines, decision trees, … (FSM most

popular, details next section)
– Appealing since simple, natural, embodies common

sense
• Ex: if you see enemy weaker than you, attack. If you

see enemy stronger, then go get help
– Often quite adequate for many AI tasks
– Trouble is, often does not scale

• Complex situations have many factors
• Add more rules, becomes brittle

Based on Chapter 5.3, Introduction to Game Development

Game Agents – Thinking (2 of 3)

• Search
– Look ahead and see what move to do next
– Ex: piece on game board, pathfinding (ch

5.4)
• Machine learning

– Evaluate past actions, use for future
– Techniques show promise, but typically too

slow
– Need to learn and remember

Based on Chapter 5.3, Introduction to Game Development

26

Game Agents – Thinking (3 of 3)

• Making agents stupid
– Many cases, easy to make agents dominate

• Ex: bot always gets head-shot
– Dumb down by giving “human” conditions, longer

reaction times, make unnecessarily vulnerable
• Agent cheating

– Ideally, don’t have unfair advantage (such as more
attributes or more knowledge)

– But sometimes might to make a challenge
• Remember, that’s the goal, AI lose in challenging way

– Best to let player know

Based on Chapter 5.3, Introduction to Game Development

AI for Games – Mini Outline

• Introduction (done)
• Agents (done)
• Finite State Machines (next)
• Common AI Techniques
• Promising AI Techniques

27

Finite State Machines (1 of 2)

• Abstract model of computation
• Formally:

– Set of states
– A starting state
– An input vocabulary
– A transition function that maps inputs and the

current state to a next state

Based on Chapter 5.3, Introduction to Game Development

Wander Attack

Flee

See Enemy

Low
 H

eal
thNo Enemy

No Enemy

Finite State Machines (2 of 2)

• Most common game AI software pattern
– Natural correspondence between states and

behaviors
– Easy to diagram
– Easy to program
– Easy to debug
– Completely general to any problem

• Problems
– Explosion of states with more variables, conditions
– Often created with ad hoc structure

Based on Chapter 5.3, Introduction to Game Development

28

Finite-State Machine: Approaches

• Three approaches
– Hardcoded (switch statement)
– Scripted
– Hybrid Approach

Based on Chapter 5.3, Introduction to Game Development

Finite-State Machine:
Hardcoded FSM

void RunLogic(int * state) {
switch(state)
{

case 0: //Wander
Wander();
if(SeeEnemy()) { *state = 1; }
break;

case 1: //Attack
Attack();
if(LowOnHealth()) { *state = 2; }
if(NoEnemy()) { *state = 0; }
break;

case 2: //Flee
Flee();
if(NoEnemy()) { *state = 0; }
break;

}
}

Based on Chapter 5.3, Introduction to Game Development

29

Finite-State Machine:
Problems with switch FSM

1. Code is ad hoc
– Language doesn’t enforce structure

2. Transitions result from polling
– Inefficient – event-driven sometimes

better
3. Can’t determine 1st time state is entered
4. Can’t be edited or specified by game

designers or players

Based on Chapter 5.3, Introduction to Game Development

Finite-State Machine:
Scripted with alternative language

AgentFSM
{

State(STATE_Wander)
OnUpdate

Execute(Wander)
if(SeeEnemy) SetState(STATE_Attack)

OnEvent(AttackedByEnemy)
SetState(Attack)

State(STATE_Attack)
OnEnter

Execute(PrepareWeapon)
OnUpdate

Execute(Attack)
if(LowOnHealth) SetState(STATE_Flee)
if(NoEnemy) SetState(STATE_Wander)

OnExit
Execute(StoreWeapon)

State(STATE_Flee)
OnUpdate

Execute(Flee)
if(NoEnemy) SetState(STATE_Wander)

}

Based on Chapter 5.3, Introduction to Game Development

30

Finite-State Machine:
Scripting Advantages

1. Structure enforced
2. Events can be handed as well as polling
3. OnEnter and OnExit concept exists
4. Can be authored by game designers

– Easier learning curve than straight C/C++

Finite-State Machine:
Scripting Disadvantages

• Not trivial to implement
• Several months of development

– Custom compiler
• With good compile-time error feedback

– Bytecode interpreter
• With good debugging hooks and support

• Scripting languages often disliked by programmers
– Can never approach polish and robustness of

commercial compilers/debuggers

Based on Chapter 5.3, Introduction to Game Development

31

Finite-State Machine:
Hybrid Approach

• Use a class and C-style macros to approximate a
scripting language

• Allows FSM to be written completely in C++
leveraging existing compiler/debugger

• Capture important features/extensions
– OnEnter, OnExit
– Timers
– Handle events
– Consistent regulated structure
– Ability to log history
– Modular, flexible, stack-based
– Multiple FSMs, Concurrent FSMs

• Can’t be edited by designers or players

Based on Chapter 5.3, Introduction to Game Development

Finite-State Machine:
Extensions

• Many possible extensions to basic FSM
– OnEnter, OnExit
– Timers
– Global state, substates
– Stack-Based (states or entire FSMs)
– Multiple concurrent FSMs
– Messaging

Based on Chapter 5.3, Introduction to Game Development

32

AI for Games – Mini Outline

• Introduction (done)
• Agents (done)
• Finite State Machines (done)
• Common AI Techniques (next)
• Promising AI Techniques

Common Game AI Techniques

• Whirlwind tour of common techniques
• (See Ch 5.3, p 554)

Based on Chapter 5.3, Introduction to Game Development

