

Overview

- Statistics important for game analysis
- What are some examples of
- Probability important for statistics
- So, understand some basic probability
- Also, probability useful for game development
probabilities needed for probabilities needed
game development?

Probability - Definition

- Probability - likelihood of event to occur, measured by ratio of favorable cases to unfavorable cases
- Set of rules that probabilities must follow
- Probabilities must be between 0 and 1 (but often written/said as percent)
- Probabilities of set of exhaustive, mutually exclusive events must add up to 1
- e.g., D6: events $1,2,3,4,5,6$. Probability of $1 / 6^{\text {th }}$ to each \rightarrow legal set of probabilities
- e.g., D6: events $1,2,3,4,5,6$. Probability of $1 / 2$ to $1,1 / 2$ to 2 , and 0 to all the others
\rightarrow Also legal set of probabilities
- Not how honest d6's behave in real life!

So, how to assign probabilities?

Rules About Probabilities (1 of 2)

- Complement: \underline{A} an event, event " \underline{A} does not occur" called complement of \underline{A}, denoted A^{\prime} $P\left(A^{\prime}\right)=1-P(A)$
- e.g., d6: $P(6)=1 / 6$, complement is $P\left(6^{\prime}\right)$ and probability of not 6 is $1-1 / 6$, or $5 / 6$
- Note: when using p, complement is often q
- Mutually exclusive: Have no simple outcomes in common - can't both occur in same experiment
$P(A$ or $B)=P(A)+P(B)$
- e.g., d6: $P(3$ or 6$)=P(3)+P(6)=1 / 6+1 / 6=2 / 6$

Assigning Probabilities

- Classical (by theory)
- In many cases, exhaustive, mutually exclusive outcomes equally
likely \rightarrow assign each outcome probability of $1 / n$
- e.g., d6: $1 / 6$, Coin: prob heads $1 / 2$, tails $1 / 2$, Cards: pick Ace $1 / 13$
- Empirically (by observation)
- Obtain data through measuring/observing
- e.g., Watch how often people play League of Legends in lab
versus some other game. Say, 30\% LoL. Assign that as probability
- Subjective (by hunch)
- Based on expert opinion or other subjective method
- e.g., e-sports writer says probability Team SoloMid (League team) will win World Championship is 25%

Rules About Probabilities (2 of 2)

- Independence: One occurs doesn't affect probability that other occurs
- e.g., 2d6: $A=$ die 1 get 5, $B=$ die 2 gets 6 . Independent, since result of one roll doesn't affect roll of other
- Probability both occur $P(A$ and $B)=P(A) \times P(B)$
- e.g., 2d6: prob of "snake eyes" is $P(1) \times P(1)=1 / 6 \times 1 / 6=1 / 36$
- Not independent: One occurs affects probability that other occurs
- Probability both occur $P(A$ and $B)=P(A) \times P(B \mid A)$
- Where $P(B \mid A)$ means the prob B given A happened
- e.g., MMO has 10\% mages, 40\% warriors, 80\% Boss defeated. Probability Boss fights mage and is defeated?
- You might think that $=P($ mage $) \times P($ defeat $B)=.10 * .8=.08$
- But likely not independent. P (defeat $B \mid$ mage) $<80 \%$. So, need not-independent formula P (mage)* P (defeat $\mathrm{B} \mid$ mage)

Probability Example

- Probability drawing King?
$P(K)=1 / 4$
- Draw, put back. Now?
$P(K)=1 / 4$
- Probability not King?
$P\left(K^{\prime}\right)=1-P(K)=3 / 4$
- Draw, put back. 2 Kings?

Probability Example

- Draw. King or Queen? $P(K$ or $Q)=P(K)+P(Q)$

$$
=1 / 4+1 / 4=1 / 2
$$

- Probability drawing King?

$$
P(K)=1 / 4
$$

- Draw, put back. Now? $P(K)=1 / 4$
- Probability not King? $P\left(K^{\prime}\right)=1-P(K)=3 / 4$
- Draw, put back. 2 Kings?
$P(K) \times P(K)=1 / 4 \times 1 / 4=1 / 16$

Probability Example

- Draw. King or Queen?
- Probability drawing King?
$P(K)=1 / 4$
- Draw, put back. Now?
$P(K)=1 / 4$
- Probability not King?
$P\left(K^{\prime}\right)=1-P(K)=3 / 4$
- Draw, put back. 2 Kings?
$P(K) \times P(K)=1 / 4 \times 1 / 4=1 / 16$

Outline

- Intro
- Probability
- Probability Distributions
(done)
(done)
(next)

Binomial Distribution Example (1 of 3)

How to assign probabilities?

- Suppose toss 3 coins
- Random variable
$X=$ number of heads
- Want to know probability of exactly 2 heads

$$
P(X=2)=?
$$

Binomial Distribution Example (1 of 3)

- Suppose toss 3 coins
- Random variable
$X=$ number of heads
- Want to know probability of exactly 2 heads $P(X=2)=$?

How to assign probabilities?

- Could measure (empirical) - Q: how?
- Could use "hunch" (subjective)
- Q: what do you think?
- Could use theory
(classical)
- Math using our probability rules (not shown)
- Enumerate (next)

Binomial Distribution Example (3 of 3)

These are all binomial distributions

Binomial Distribution (1 of 2)

- In general, any number of trials (n) \& any probability of successful outcome (p) (e.g., heads)

- Characteristics of experiment that gives random number with binomial distribution:
- Experiment consists of n identical trials.
- Each trial results in only two possible outcomes, S or F
- Probability of S each trial is same, denoted p
- Trials are independent
- Random variable of interest (X) is number of S's in n trials

Binomial Distribution (2 of 2)

- "So what?"
- Can use known formulas

$M E A N: \mu=n p$
Variance $: \sigma^{2}=n p q$
$S D: \sigma=\sqrt{n p q}$

Excel: binom.dist(- 2 heads, 3 flips =binom.dist(2,3,0.5, FALSE) $=0.375$ (i.e., 3/8)

Poisson Distribution

- Distribution of probability of events occurring in certain interval (broken into units)
- Interval can be time, area, volume, distance
- e.g., number of players arriving at server lobby in 5minute period between noon-1pm
- Requires

1. Probability of event same for all units
2. Number of events in one unit independent of number of events in any other unit
3. Events occur singly (not simultaneously). In other words, as unit gets smaller, probability of two events occurring approaches 0

Poisson Distributions?

Not Poisson

- Number of people arriving at restaurant during dinner hour
- People frequently arrive in groups
- Number of students register for course in BannerWeb per hour on first day of registration
- Prob not equal - most register in first few hours
- Not independent - if too many register early, system crashes

Probably Poisson

- Number of logins to MMO during prime time
- Number of groups arriving at restaurant during dinner hour
- Number of defects (bugs) per 100 lines of code
- People arriving at cash register (if they shop individually)

Phrase people use is "random arrivals"

Poisson Distribution

- Distribution of probability of events occurring in certain interval

$$
P(X=x)=e^{-\lambda} \frac{\lambda^{x}}{x!}
$$

- $X=$ a Poisson random variable
- $x=$ number of events whose probability you are calculating
- $\lambda=$ the Greek letter "lambda," which represents the average number of events that occur per time interval
- $\mathrm{e}=\mathrm{a}$ constant that's equal to approximately 2.71828

Poisson Distribution Example

- Number of games student plays per day averages one per day
- Number of games played per day independent of all other days
- Can only play 1 game at a time
- What's probability of playing two games next day?
- In this case, the value of $\lambda=1$

$$
P(X=2)=\mathrm{e}^{-1} \frac{1^{2}}{2!}=0.1839
$$

Outline

- Intro
(done)
- Probability
(done)
- Probability Distributions
- Discrete (done)
So far random variable could take only discrete
set of values
Q: What does that mean?
Q: What other distributions might we consider?

Outline

- Intro
- Probability
- Probability Distributions

- Discrete	(done)
- Continuous	(next)

(done)
(done)

- Many random variables are continuous
- e.g., recording time (time to perform service) or weight, strength)
- For continuous, doesn't make sense to talk about $P(X=x) \rightarrow$ continuum of possible values for X
- Mathematically, if all nonzero, total probability infinite this violates our rule)

Continuous Distributions

 shown here) What continuous distribution is especially important?
a, continuous distributions have probability density, $\mathrm{f}(\mathrm{x})$ \rightarrow How to use to calculate probabilities?

- Don't care about specific values
- e.g., P(Height = 60.1946728163 inches)
- Instead, ask about range of values
- e.g., P(59.5 < X < 60.5)
- Uses calculus (integrate shown here) - (not

Normal Distribution (1 of 2)

- "Bell-shaped" or "Bell-curve"
- Distribution from $-\infty$ to $+\infty$
- Symmetric
- Mean, median, mode all same
- Mean determines location, "standard deviation determines "width"
- Super important
- Lots of distributions follow
normal ("bell curve")
- Basis for inferential statistics
(e.g., statistical tests)
- "Bridge" between probability Aka "Gaussian" distribution and statistics

What continuous distribution is especially important? \rightarrow The Normal Distribution

Normal Distribution (2 of 2)

- Many normal distributions
 distribution refers to
standard normal
- Subtract mean (μ)
- Divide by standard deviation (σ)

Standard Normal Distribution

- Standardize
- Mean $\mu=0$
- Subtract mean
- Standard Deviation $\sigma=1$
- Divide by standard deviation
- Total area under curve = 1
- Sounds like probability!

Test for Normality

- Why?
- Use some inferential statistics (parametric tests)
- Can use Empirical Rule
- How? Several ways. One:
- Normal probability plot - graphical technique to see if data set is approximately normally distributed

Using the Standard Normal

- Suppose League of Legends Champion released once every 24 days on average,
standard deviation of 3 days
- What is the probability Champion released 30+ days?
- $x=30, \mu=24, \sigma=3$
=norm. dist(x, mean, stddev, false) $=n o r m . d i s t(30,24,3$, false $)$
$Z=(x-\mu) / \sigma$

$$
=(30-24) / 3
$$

$$
=2
$$

- Want to know $\mathrm{P}(\mathrm{Z}>2)$

Normality Testing with a Histogram

- Use histogram shape to look for "bell curve"

Yes

No

Normality Testing with a Histogram

They are all from normal distribution! Suffer from: Binning (not continuous)
Few samples (15)

Normality Testing with a QuantileQuantile Plot

- Quantiles of one versus another
- If line \rightarrow same distribution

1. Order data
2. Compute Z scores (normal)
3. Plot data ($\mathrm{y}-$ axis) versus Z (x-axis)

- Normal? \rightarrow line

Quantile-Quantile Plot Example

- Do the following values come from a normal distribution?
$7.19,6.31,5.89,4.5,3.77,4.25,5.19,5.79,6.79$

1. Order data
2. Compute Z scores
3. Plot data versus Z

