IMGD 2905

Descriptive Statistics

Chapter 3

STATISTICS
ANALYTICS

Summarizing Data

- With lots of playtesting, there will be a lot of data - This is a good thing!
- But raw data is just a pile of numbers
- Rarely of interest
- Or even sensible

- $\mathrm{Q}:$ How to summarize all this information?

Summarizing Data

- With lots of playtesting, there will be a lot of data - This is a good thing!
- But raw data is just a pile of numbers
- Rarely of interest
- Or even sensible
- Q: How to summarize all this information?

Measures of central tendency

Measure of Central Tendency: Mean
The sum of the measurements

- Also called the "arithmetic mean" or "average"
- In Excel, =AVERAGE (range)
- =AVERAGEIF () - averages if numbers meet certain condition

Measure of Central Tendency: Mode

- Number which occurs most frequently
- Not so useful in many cases
\rightarrow Best use for categorical data
- e.g., most played champion in League
- In Excel, =MODE () x馬

! ! ! ! ! ! ! ! ! ! Cedar, Alder, Cedar, Pine, Cedar Cedar, Alver, Alver, Pine, Cedar

- In Excel, =MEDIAN(range)

Depiction: Mean, Median, Mode

Which to Use, Mean, Median, Mode?

(a)

(d)

(c)

(b)

(d)

Which to Use, Mean, Median, Mode

- Mean many statistical tests with sample
- Estimator of population mean
- Uses all data
- Median is useful for skewed data
- e.g., income data (US Census) or housing prices (Zillo)
- e.g., Overwatch team (6 players): 5 people level 5, 1 person level 275
- Mean is 50 - not so useful since no one at this level
- Median is 5 - more representative
- Does not use all data. "Resistant" to extremes (e.g., 275)
- But what if were exam scores? Hard to "bring up" grade
- Mode is useful primarily for categorical data only
- Most played League champion, most popular TagPro map,

Other Measures of Position

- Maximum / Minimum
- Not discussed more
- Trimmed Mean
- Quartiles
- Percentiles

Other Measures of Position

- May not always want center
- e.g., want to know best Champions
- What other positions may be desired?

Trimmed Mean

- Take "trimming" off top and bottom (typically 5% or 10\%)
- Reduces effects of extreme values, like median
- In Excel, =TRIMMEAN(array, percent)

Quartiles

- Sort values
- First quartile (Q1) is 25% from bottom
- Third quartile (Q3) is 75% from bottom
- (What is second quartile?)
- In Excel, =QUARTILE (array, n)

Summarizing Data, Part 2

- Ok, pile of numbers can now be summarized as one number
- Mean, median, mode
- But is that enough?
- $\mathrm{Q}:$ What other major aspect of numbers haven't we summarized?

Percentiles

- Generalization of quartiles
- N th percentile is data point $n \%$ from bottom of data
- Interpolate as for first quartile
- In Excel, =PERCENTILE (array, k) (k: 0 to 1)

Summarizing Data, Part 2

- Ok, pile of numbers can now be summarized as one number
- Mean, median, mode
- But is that enough?
- Q: What other major aspect of numbers haven't we summarized?

Measures of variation (aka measures of dispersion, or measures of spread)

Summarizing Data, Part 2

"Then there is the man who drowned crossing a stream with an average depth of six inches." - W.I.E. Gates

- Summarizing by single number rarely enough \rightarrow need statement about variation

Above: does single number (mean) tell you enough about data?

Variation Overview (1 of 3)

- Is data clumped or spread out?

Variation Overview (2 of 3)

- Is data clumped or spread out?

Variation Overview (3 of 3)

- Is data clumped or spread out?

"Motion and Scene Complexity for Streaming Video Games"

Variance Example

- Sample kills in League of Legends match
$-12,20,16,18,19$
- What is sample variance?
- First, mean $=85 / 5=17$

Standard Deviation

- Square-root of variance
- Usually, use standard deviation instead of variance
- Why? \rightarrow Same units as data (e.g., "kills" in previous example)
- Can compare standard deviation to mean (coefficient of variation, next)
- But first:
- Mendenhall's Empirical Rule
- z-score

Semi-Interquartile Range

- $1 / 2$ distance between Q3 ($75^{\text {th }}$ percentile) and Q1 ($24^{\text {th }}$ percentile)

- Use semi-interquantile (SIQR) for index of dispersion whenever using median as index of central tendency

Z-Score

- Measure of how "far" from center (mean) single data point is
- Not measure of dispersion for
 whole data set

Example	
Mean	469
Std dev	119
X	650
Z-score for X?	
($650-469) / 119$	1.52

Mendenhall's Empirical Rule

- About 68% data within one standard deviation of mean
- interval between mean-s and mean + s contains about 68\% of data
- About 95\% within 2 standard deviations of mean
- Almost all data within 3 standard deviations of mean

- (Rules based on normal distribution)

Index of Variation Example

(sorted)		
Lap Times	- First, sort	
1.9	- Mean = 4.4	
2.7		
3.9	- $\mathrm{Min}=1.9, \mathrm{Max}=5.9$	
4.1	- Median $=[16 / 2]=8^{\text {th }}=4.5$	
4.2	- $\mathrm{Q} 1=16 / 4=8{ }^{\text {th }}=4.1$	
4.2	- $\mathrm{Q} 3=3 * 16 / 4=12^{\text {th }}=5.1$	
4.4 4.5		
4.5	- SI QR $=(\mathrm{Q} 3-\mathrm{Q} 1) / 2$	$=0.5$
4.8	- Variance	$=0.96$
4.9	- Stddev	$=0.98$
5.1 5.1	- $C V=$ stddev/mean	$=0.22$
5.3	- Range $=$ max $-\min$	= 4

Ranking of Affect by Outliers?

Measure of Variation

Most to Least

- Variance
- Range
- Standard Deviation
- Coefficient of Variation
- Semi-interquartile Range

Ranking of Affect by Outliers?

Measure of Variation Most to Least

- Variance
- Range
- Range
- Standard Deviation
- Coefficient of Variation
- Variance
- Standard Deviation
- Coefficient of Variation
- Semi-interquartile Range
- SIQR
resistant

Index of Variation Summary

- Ranking of affect by outliers
- Range
- Variance
- Standard deviation
- Coefficient of variation
- Semi-interquartile range
resistant
- Note, all only applied to quantitative data!
- For categorical data, can't quantify spread since no distance' between
- Instead, give number of categories for given percentile of samples
- e.g., " 90% of samples are in 3 categories"

Depicting Variation in Charts

- Histogram
(done)
- Cumulative distribution
(done)
- Box-and-Whiskers
(new)
- Error Bars
(new)

