IMGD 2905

Presenting Data

Chapter 2
metimo 5
STATISTICS
ANALYTICS

Outline

- Types of Charts
(next)
- Guidelines for Charts
- Common Mistakes

"Right" Chart Depends on Variable Type

- Qualitative (Categorical) variables
- Can have states or subclasses
- e.g., position: [striker, goalie, midfield]
- Can be ordered or unordered
- e.g., bronze, silver, gold \rightarrow ordered
- e.g., support, tank, jungler \rightarrow unordered
- Quantitative (Numeric) variables
- Numeric levels
- Discrete or continuous
- e.g., goals in season, speed in meters
- e.g., kills / deaths ratio, win percentage

Categorical: Bar Chart

- Chart containing rectangles ("bars") where length represents count, amount, or percent
- Better than table for comparing numbers

Categorical: Pareto Chart

- Bar chart, arranged most to least frequent
- Line showing cumulative percent
- Helps identify most common

Demo: imgdpops.xlsx

Pareto Diagram

Categorical: Pie Chart

- Wedge-shaped areas ("pie slices") represent count, amount or percent of each category from whole
- Compare relative amounts at a glace
- Best if few slices since quantifying "size" of pie difficult

- Comparing pies also difficult
Demo:-imgdpops.-x-1sx Person Shooter: Team Fortress 2" hthp://www.cs.wpi.edu/-claypooligntrt2/

Categorical: Cross-Classification Table

- Multi-column table that presents count or percent for 2+ categorical variables
- Good for comparison across multi-categorical data

Class rank • Do you live on campus? Crosstabulation

		Do youl live on campus?		Total
		Offrcampus	On-campus	
Class rank	Freshman	37	100	7
	Sophomore	42	48	0
	Junior	90	8	8
	Senior	62	1	63
Total		231	157	388

Insert Pivot Chart Select Major through Grade
Demo: grades.xlsx
Drag Majors to Axis
Drag Grade to Axis Drag Grade to Values

Numeric: Frequency Distribution

- Groups of numeric values - May include percentage and frequency
- e.g., Survey of Champion "skins" bought with RP
- 1, 2, 1, 0, 3, 4, 0, 1, 1, 1, 2, 2, 3, 2, 3, 2, 1, 4, 0, 0
- Cluster into groups
- Report frequency per group

Skins	Freq.	$\frac{\text { Percent }}{20 \%}$
0	4	20\%
1	6	30\%
2	5	25\%
3	3	15\%
4	2	10\%

- Typically equal size
- Sometimes ends are open (for extremes)
- Bin size/number variable
- Too many and not readable
- Guide: given data points
- 100 or fewer 7-10
- 101-200 11-15 - 200+ 13-20

Cumulative Distribution

- Cumulative amount of data with value or less
- Easy to see min, max, median
- Compare shapes of distributions

Demo: |ol-patches.x|sx
Select column R (Bug Fixes)
Sort low to high
New column S for percent [=ROW()/164]
Select column \rightarrow paste down all
Select both column R and S
nsert \rightarrow Scatter plot with lines

"Nerfs, Buffs and Bugs - Analysis of the mpact of Patching on League of Legends"
http://www.s.wpoledu/claypool/papers/loc/crawer//

Histogram

- Bar chart for grouped numerical data

Bar chart for grouped numerical data

- No (or small) gaps btwn adjacent bars

\div

Many More Charts!

https://en.wikipedia.org/wiki/Chart

- Bubble
- Gantt
- Waterfall
- Nolan
- Tree
- Pert
- Gap
- Smith
- Polar
- Skyline
- Violin
- Vowel
- Candlestick
- Nomogram
- Kagi
- Natal
- If common chart effective for message, use - Learn/use other charts as needed

Game Analytics Charts

Gunter Wallner and Simone Kriglstein. "An Introduction to Gameplay Data Visualization", Game Research Methods, pages 231-250, ETC Press, ISBN: 978-1-312-88473-1, 2015. http://dl.acm.org/citation.cfm?id=2812792

- Player choices (e.g., build units)
- Density of activities (e.g., where spend time on map)
- Movement through levels

Note, Heat Map for Tables, Too!

Excel tutorial at: https://trumpexcel.com/heat-map-excel/

Outline

- Types of Charts
(done)
- Guidelines for Charts
(next)
- Again, "art" not "rules". Learn with experience. Recognize good/bad when see it.
- Common Mistakes

Guidelines for Good Charts (1 of 5)

- Require minimum effort from reader
- Perhaps most important metric
- Given two, can pick one that takes less reader effort
e.g.,

Direct Labeling

Legend Box

Guidelines for Good Charts (2 of 5)

- Maximize information
- Make self-sufficient
- Key words in place of symbols
- e.g., "Gold IV" and not
- Payer
e.g., "'Daily Games Played" not "Games Played"
- Axis labels as informative as possible
- e.g., "Game Time (seconds)" not "Game Time"
- Help by using captions (or title, if stand-alone)
- e.g., "Game time in seconds
e.g., "Game time in second
versus player skill in total
hours played"

Guidelines for Good Charts (3 of 5)

- Minimize ink (1 of 2)
- Maximize information-to-ink ratio
- Too much unnecessary ink makes chart cluttered, hard to read
- e.g., no gridlines unless needed to help read
- Chart that gives easier-to-read for same data is preferred

Guidelines for Good Charts (3 of 5)

- Minimize ink (2 of 2)

https://www.slideshare.net/NicoleMarinsek/darkhorse-line-chart

Guidelines for Good Charts (4 of 5)

- Use commonly accepted practices
- Present what people expect
- e.g., origin at $(0,0)$
- e.g., independent (cause) on x-axis, dependent (effect) on y-axis
- e.g., x-axis scale is linear
- e.g., increase left to right, bottom to top
- e.g., scale divisions equal
- Departures are permitted, but require extra effort from reader \rightarrow so use sparingly!

Checklist for Good Charts	
- Axes - Are both axes labeled? - Are the axis labels self-explanatory and concise? - Are the scale and divisions shown on both axes? - Are the min and max ranges appropriate? - Are the units indicated? - Lines/Curves/Points - Is the number of lines/curves reasonably small? - Are curves labeled? - Are all symbols clearly distinguishable? - Is a concise, clear legend provided? - Does the legend obscure any data? - Information - If the y-axis is variable, is an indication of spread (error bars) shown? - Are grid lines required to read data (if not, then remove)?	Scale - Are units increasing left to right (x axis) and bottom to top (y-axis)? - Do all charts use the same scale? - Are the scales contiguous? - Is bar chart order systematic? - Are bars appropriate width, spacing? Overall - Does the whole chart add information to reader? - Are there no curves/symbols/text that can be removed and still have the same information? - Does the chart have a title or caption (not both)? - Is the chart self-explanatory and concise? - Do the variables plotted give more information than alternatives? - Is chart referenced and discussed in any accompanying report?

Guidelines for Good Charts (Summary)

- For each chart, go over "checklist"
- The more "yes" answers, the better
- Remember, while guidelines, art and not science
- So, may consciously decide not to follow these guidelines if better without them \rightarrow but have good reason!
- In practice, takes several trials before arriving at "best" chart
- Want to present message the most: accurately, simply, concisely, logically
- Accompany with description! Text or verbal
- Remember, audience/reader has not seen! - Make sure to introduce

Common Mistakes (1 of 6)

- Presenting too many alternatives on one chart
- Guidelines
- More than 5 to 7 messages is too many
- (Maybe related to the limit of human short-term memory?)
- Line chart with 6+ curves
- Column chart with $10+$ bars
- Pie chart with 8+ components
- Each cell in histogram fewer than 5 values

Common Mistakes (1 of 6)
- Presenting too many alternatives on one chart
- Guidelines
- More than 5 to 7 messages is too many
• (Maybe related to the limit of human short-term
memory?)
- Line chart with 6+ curves
- Column chart with 10+ bars
- Pie chart with 8+ components
- Each cell in histogram fewer than 5 values

Describing Chart in Report \& Presentation

- "Formula"
- Describe all axes
- E.g., "The x-axis is time since game began, in
- Describe data

Describe data

- E.g., "The blue dots are the
E.g., "The blue dots are the
average maze completion avera,
time"
- Then provide message
- E.g., "Notice how the red bar is higher than the blue indicating that ...
- Example on Web page

Outline

- Types of Charts (done)
- Guidelines for Charts (done)
- Common Mistakes (next)

Common Mistakes (2 of 6)

- Presenting many y-variables on single chart
- Better to make separate graphs
- Plotting many y-variables saves space, but better to requires reader to figure out relationship
- Sometimes, space constraints (e.g., journal/conference papers),
- So may "bend" but better to remove than "break"

Common Mistakes (3 of 6)

- Using symbols in place of text
- More difficult to read symbols than text
- Reader must flip through report to see symbol mapping to text
- Even if "save" writers time, really "wastes" it since reader is likely to skip!

Player arrival rate

Common Mistakes (4 of 6)

- Placing extraneous information on chart
- Goal to convey message, so extra information distracting
- e.g., Using gridlines only when exact values needed
- e.g., Showing "per-user" data when only average user data needed

Common Mistakes (6 of 6)

- Using line chart instead of column chart
- Lines joining successive points signify that they can be approximately interpolated
- If don't have meaning, should not use line chart

Non-Zero Origins to Emphasize
(1 of 3)

- Normally, both axes meet at origin
- By moving and scaling, can magnify (or reduce!) difference

Which graph is better?

Non-Zero Origins to Emphasize (2 of 3)

Dun's Review, 1938

Non-Zero Origins to Emphasize (3 of 3)

- Choose scale so that vertical height of highest point is at least $3 / 4$ of the horizontal offset of right-most point
- Three-quarters rule
- (And represent origin as 0,0)

Plotting Quantities without Measure of Spread

- When random quantification, representing mean (or median) alone (or single data point!) not enough

(Worse)

(Better)

Pictograms Scaled by Height

- If scaling pictograms, do by area not height since eye drawn to area
- e.g., twice as good \rightarrow doubling height quadruples area

Using Inappropriate Cell Size in Histogram

- Getting cell size "right" always takes more than one attempt
- If too large, all points in same cell
- If too small, lacks smoothness

Same data. Left is "normal" and right is "exponential"

Using Broken Scales in Column Charts

- By breaking scale in middle, can exaggerate differences
- May be trivial, but then looks significant
- Similar to "zero origin" problem

System A-F

Pictorial Games (1 of 2)

- Can deceive as easily as can convey meaning

Pictorial Games (2 of 2)

- Can deceive as easily as can convey meaning

