IMGD 2905

Simple Linear Regression

Chapter 10

1

Motivation

- Have data (sample, x's)
- Want to know likely value of next observation
- E.g., playtime versus skins owned
- A-

Motivation

- Have data (sample, x's)
- Want to know likely value of next observation
- E.g., playtime versus skins owned
- A - reasonable to compute mean (with confidence interval)
- B-

Motivation

- Have data (sample, x's)
- Want to know likely value of next observation
- E.g., playtime versus skins owned
- A - reasonable to compute mean (with confidence interval)
- B - could do same, but there appears to be relationship between X and Y !

Motivation

- Have data (sample, x's)
- Want to know likely value of next observation
- E.g., playtime versus skins owned
- A - reasonable to compute mean (with confidence interval)
- B - could do same, but there appears to be relationship between X and Y !
\rightarrow Predict B
e.g., "trendline" (regression)

Overview

- Broadly, two types of prediction techniques:

1. Regression - mathematical equation to model, use model for predictions

- We'll discuss simple linear regression

2. Machine learning - branch of AI, use computer algorithms to determine relationships (predictions)

- CS 453X Machine Learning

Types of Regression Models

- Explanatory variable explains dependent variable
- Variable X (e.g., skill level) explains Y (e.g., KDA)
- Can have 1 or 2+
- Linear if coefficients added, else Non-linear

Outline

- Introduction
- Simple Linear Regression
- Linear relationship
- Residual analysis
- Fitting parameters
- Measures of Variation
- Misc

Simple Linear Regression

- Goal - find a linear relationship between to values
- E.g., kills and skill, time and car speed
- First, make sure relationship is linear! How?

Simple Linear Regression

- Goal - find a linear relationship between to values
- E.g., kills and skill, time and car speed
- First, make sure relationship is linear! How?
\rightarrow Scatterplot
(c) no clear relationship
(b) not a linear relationship
(a) linear relationship - proceed with linear regression

(b) Nonlinear

(c) No relationship

Linear Relationship

- From algebra: line in form

$$
Y=m X+b
$$

$-m$ is slope, b is y-intercept

- Slope (m) is amount Y increases when X increases by 1 unit
- Intercept (b) is where line crosses y-axis, or where y-value when $x=0$

11

Simple Linear Regression Example

- Size of house related to its market value.
$X=$ square footage
$Y=$ market value (\$)

	A	B	C
1	Home Market Value		
2			
3	House Age	Square Feet	Market Value
4	33	1.812	\$90,000.00
5	32	1.914	\$104,400.00
6	32	1.842	\$93,300.00
7	33	1.812	\$91,000.00
8	32	1.836	\$101,900.00
9	33	2.028	\$108,500.00
10	32	1,732	\$87,600.00

- Scatter plot (42 homes) indicates linear trend

Simple Linear Regression Example

- Two possible lines shown below (A and B)
- Want to determine best regression line
- Line A looks a better fit to data
- But how to know?

$$
Y=m X+b
$$

13

Simple Linear Regression Example

- Two possible lines shown below (A and B)
- Want to determine best regression line
- Line A looks a better fit to data
- But how to know?

$$
Y=m X+b
$$

Line that gives best fit to
data is one that minimizes
prediction error
\rightarrow Least squares line
(more later)

Simple Linear Regression Example

 x鳬 Chart- Scatterplot
- Right click \rightarrow Add Trendline

15

Simple Linear Regression Example x王 Formulas

=SLOPE(C4:C45,B4:B45)

- Slope = 35.036
=INTERCEPT(C4:C45, B4:B45)
- Intercept = 32,673

A				B		C
1	Home Market Value					
2						
3	House Age		Square Feet	Market Value		
4		33	1,812	$\$ 90,000.00$		
5	32	1.914	$\$ 104,400.00$			
6		32	1,842	$\$ 93,300.00$		
7	33	1,812	$\$ 91,000.00$			
8	32	1,836	$\$ 101,900.00$			
9	33	2,028	$\$ 108,500.00$			
10	32	1,732	$\$ 87,600.00$			

- Estimate Y when $X=1800$ square feet
$Y=32,673+35.036 \times(1800)=\$ 95,737.80$

Simple Linear Regression Example

- Market value $=32673+35.036 x$ (square feet)
- Predicts market value better than just average

But before use, examine residuals

17

Outline

- Introduction
(done)
- Simple Linear Regression
- Linear relationship
(done)
- Residual analysis
(next)
- Fitting parameters
- Measures of Variation
- Misc

Residual Analysis

- Before predicting, confirm that linear regression assumptions hold
- Variation around line is normally distributed
- Variation equal for all X
- Variation independent for all X
- How? Compute residuals (error in prediction) \rightarrow Chart

Residual Analysis

Residual Analysis - Good

21

Residual Analysis - Summary

- Regression assumptions:
- Normality of variation around regression
- Equal variation for all y values
- Independence of

(b) variation
(a) ok
(b) funnel
(c) double bow

(d) nonlinear
(c)

(d)

Outline

- Introduction
- Simple Linear Regression
- Linear relationship
- Residual analysis
- Fitting parameters
(done)
(done)
(next)
- Measures of Variation
- Misc

Linear Regression Model

Random error associated with each observation

Fitting the Best Line

- Plot all $\left(X_{i}, Y_{i}\right)$ Pairs

Fitting the Best Line

- Plot all $\left(X_{j}, Y_{j}\right)$ Pairs
- Draw a line. But how do we know it is best?

Fitting the Best Line

- Plot all $\left(X_{i}, Y_{i}\right)$ Pairs
- Draw a line. But how do we know it is best?

Fitting the Best Line

- Plot all $\left(X_{i}, Y_{j}\right)$ Pairs
- Draw a line. But how do we know it is best?

Fitting the Best Line

- Plot all $\left(X_{i}, Y_{i}\right)$ Pairs
- Draw a line. But how do we know it is best?

Intercept changed

Linear Regression Model

- Relationship between variables is linear function

Least Squares Line

- Want to minimize difference between actual y and predicted \hat{y}
- Add up ε_{i} for all observed y's
- But positive differences offset negative ones
- (remember when this happened for variance?)
\rightarrow Square the errors! Then, minimize (using Calculus)

Least Squares Line Graphically

Least Squares Line Graphically

https://www.desmos.com/calculator/zvrc4lg3cr

Outline

- Introduction
- Simple Linear Regression
- Measures of Variation
- Coefficient of Determination
- Correlation
- Misc

Measures of Variation

- Several sources of variation in y
- Error in prediction (unexplained)
- Variation from model (explained)

Break this down (next)

Sum of Squares of Error

- Least squares regression selects line with lowest total sum of squared prediction errors
- Sum of Squares of Error, or SSE
- Measure of unexplained variation

Sum of Squares Regression

- Differences between prediction and population mean
- Gets at variation due to X \& Y
- Sum of Squares Regression, or SSR
- Measure of explained variation

Sum of Squares Total

- Total Sum of Squares, or SST = SSR + SSE

Coefficient of Determination

- Proportion of total variation (SST) explained by the regression (SSR) is known as the Coefficient of Determination (R^{2})

$$
R^{2}=\frac{S S R}{S S T}=1-\frac{S S E}{S S T}
$$

- Ranges from 0 to 1 (often said as a percent) 1 - regression explains all of variation 0 - regression explains none of variation

41

Coefficient of Determination Example

- How "good" is regression model? Roughly:
$0.8<=R^{2}<=1 \quad$ strong
$0.5<=R^{2}<0.8$ medium
$0<R^{2}<0.5$ weak

How "good" is the Regression Model?

I DON'T TRUST LINEAR REGRESSIONS WHEN ITS HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT TTAN TO FIND NEW CONSTELLATIONS ON IT.
https://xkcd.com/1725/

Relationships Between X \& Y

Relationship Strength and Direction Correlation

- Correlation measures strength and direction of linear relationship
-1 perfect neg. to +1 perfect pos.
- Sign is same as regression slope
- Denoted R. Why? $\mathrm{R}=\sqrt{R^{2}}$

Where, \bar{X} =mean of X variable $\bar{Y}=$ mean of Y variable

ZERO CORRELATION

NEGATIVE CORRELATION

Correlation Examples (1 of 3)

Correlation Examples (2 of 3)

47

Correlation Examples (3 of 3)

Correlation Examples (3 of 3)

Anscombe's
Quartet

Summary stats:
Mean $_{x} 9$ Mean 7.5
Var $_{x} 11$
Var $_{y} \quad 4.125$

 Model: $y=0.5 x+3$

Correlation Summary

Correlation is not Causation

Buying sunglasses causes people to buy ice cream?

Correlation is not Causation

Importing lemons causes fewer highway fatalities?

Correlation is not Causation

Correlation is not Causation

https://xkcd.com/552/

Outline

- Introduction
(done)
- Simple Linear Regression
(done)
- Measures of Variation
- Misc
(done)
(next)

Extrapolation versus Interpolation

- Prediction
- Interpolation within measured X-range
- Extrapolation outside measured X-range

Be Careful When Extrapolating

If extrapolate, make sure have reason to assume model continues

Prediction and Confidence Intervals (1 of 2)

Prediction and Confidence Intervals (2 of 2)

Beyond Simple Linear Regression

Linear

Quadratic

Root

Cubic

- Multiple regression - more parameters beyond just X
- Book Chapter 11
- More complex models - beyond just $Y=m X+b$

More Complex Models

- Higher order polynomial model has less error \rightarrow A "perfect" fit (no error)
- How does a polynomial do this?

Graphs of Polynomial Functions

Cubic Function (deg. = 3)

Linear Function (degree =1)

Quartic Function (deg. $=4$)

Quintic Function (deg. = 5)

> Higher degree, more potential "wiggles"

But should you use?

Underfit and Overfit

- Overfit analysis matches data too closely with more parameters than can be justified
- Underfit analysis does not adequately match data since parameters are missing
\rightarrow Both model do not predict well (i.e., for non-observed values)
- Just right - fit data well "enough" with as few parameters as possible

