IMGD 2905

Descriptive Statistics

Chapter 3

Summarizing Data

- With lots of playtesting, there is a lot of data
 - This is a good thing!
- But raw data is often just a pile of numbers
 - Rarely of interest
 - Or even sensible
- Q: How to summarize all this information?

Summarizing Data

- With lots of playtesting, there is a lot of data
 - This is a good thing!
- But raw data is often just a pile of numbers
 - Rarely of interest
 - Or even sensible
- Q: How to summarize all this information?

Measures of central tendency

Examples? Pros and Cons?

Breakout 2

4 3 7 8 3 4 22 3 5 3 2 3

- Different for *central tendency* with **one** number?
- What are pros and cons of each?
- Icebreaker, Groupwork, Questions

https://web.cs.wpi.edu/~imgd2905/d20/breakout/breakout-2.html

Measure of Central Tendency: Mean

http://www.cdn.sciencebuddies.org/Files/463/9/MeanEquation.jpg

- Also called the "arithmetic mean" or "average"
- In Excel, =AVERAGE(range)
 =AVERAGEIF() averages if numbers meet certain condition

Measure of Central Tendency: Median

Sort values low to high and take middle value

https://betterexplained.com/wp-content/uploads/average/median.png

http://www.nedarc.org/statisticalHelp/basicStatistics/measuresOfCenter/images/median.gif

In Excel, =MEDIAN(range)

Measure of Central Tendency: Mode

- Number which occurs most frequently
- Not too useful in many cases
- → Best use for categorical data
 - e.g., most popular Hero group in Heroes of the Storm
- In Excel, =MODE()

http://pad3.whstatic.com/images/thumb/c/cd/Find-the-Mode-of-a-Set-of-Numbers-Step-7.jpg/aid130521-v4-728px-Find-the-Mode-of-a-Set-of-Numbers-Step-7.jpg

Depiction: Mean, Median, Mode?

Depiction: Mean, Median, Mode?

Which to Use, Mean, Median, Mode?

Which to Use, Mean, Median, Mode?

- Mean many statistical tests with sample
 - Estimator of population mean
 - Uses all data
- Median is useful for skewed data
 - e.g., income data (US Census) or housing prices (Zillo)
 - e.g., Overwatch team (6 players): 5 people level 5, 1 person level 275
 - Mean is 50 not so useful since no one at this level
 - Median is 5 more representative
 - Does not use all data. "Resistant" to extremes (e.g., 275)
 - But what if were exam scores? Hard to "bring up" grade
- Mode is useful primarily for categorical data only
 - Most played League champion, most popular maze, ...

Other Measures of Position

- May not always want center
 - e.g., want to know best LoL Champions

What other positions may be desired?

Other Measures of Position

- May not always want center
 - e.g., want to knowbest LoL Champions

- Maximum /
 Minimum
 - Not discussed more
- Trimmed Mean
- Quartiles
- Percentiles

Trimmed Mean

- Take "trimming" off top and bottom (typically 5% or 10%)
 - Reduces effects of extreme values, like median
- In Excel, =TRIMMEAN(array, percent)

Blue – original mean Red – trimmed mean

http://support.minitab.com/en-us/minitab/17/histogram_mean_vs_trimmed_mean.png

Quartiles

- Sort values
- First quartile (Q1) is 25% from bottom
- Third quartile (Q3) is 75% from bottom
- (What is second quartile?)
- In Excel, =QUARTILE(array,n)

https://www.hackmath.net/images/quartiles.png

https://mathbitsnotebook.com/Algebra1/StatisticsData/quartileboxview2.png

Percentiles

- Generalization of quartiles
- Nth percentile is data point n% from bottom of data
- Interpolate as for first quartile
- In Excel, =PERCENTILE(array, k) (k: 0 to 1)

http://www.isical.ac.in/~jeexiiscore_normal/PercentilesAdvantages.htm

Summarizing Data, Part 2

- Ok, pile of numbers can now be summarized as one number
 - Mean, median, mode
- But is that enough?
- Q: What other major aspect of numbers haven't we summarized?

Summarizing Data, Part 2

- Ok, pile of numbers can now be summarized as one number
 - Mean, median, mode
- But is that enough?
- Q: What other major aspect of numbers haven't we summarized?

Measures of variation (aka measures of dispersion, or measures of spread)

Summarizing Data, Part 2

"Then there is the man who drowned crossing a stream with an average depth of six inches." – W.I.E. Gates

Summarizing by single number rarely enough
 need statement about dispersion (aka variation)

Above: does single number (mean) tell you enough about data?

Dispersion Overview (1 of 3)

• Is data clumped or spread out?

https://mathbitsnotebook.com/Algebra1/StatisticsData/STSpread.html

Dispersion Overview (2 of 3)

Is data clumped or spread out?

Dispersion Overview (3 of 3)

Is data clumped or spread out?

"Motion and Scene Complexity for Streaming Video Games"

What are Some Measures of Dispersion?

Breakout 3

Set A: 2 4 6 8 10

Set B: 2 9 9 10 10

- Different ways to report dispersion with one number?
- What are pros and cons of each?
- Icebreaker, Groupwork, Questions

https://web.cs.wpi.edu/~imgd2905/d20/breakout/breakout-3.html

Range

- Difference between smallest and largest value
- Somewhat obvious, but doesn't tell you much about "clumping"
 - Minimum may be zero
 - Maximum can be from outlier
 - Event not related to phenomena studied (e.g., 0 on project)
 - Maximum gets larger with # samples, so no "stable" point

12, 25, 27, 29, 36, 38, 40, 43, 50, 54, 62 Range = 62 - 12 = 50

http://idolosol.com/images/range-3.jpg

Variance

- Compute mean of sample
- Compute how far each value in sample is from mean
 - Some can be less than mean, some greater
 - → So <u>square</u> this difference (why square?)
- Divide by number of sample values 1
 - The "-1" corrects "bias" when trying to estimate population variance using sample variance

Sample Variance =
$$s^2 = \frac{\sum (X - \frac{1}{X})^2}{n-1}$$

Variance Example

- Sample kills in League of Legends match
 - 12, 20, 16, 18, 19
 - What is sample variance?
- First, mean = 85 / 5 = 17

<u>Kills</u>	<u>X – mean</u>	<u>(X – mean)²</u>
12	-5	25
20	3	9
16	-1	1
18	1	1
19	2	4
$c^2 - 12E$	0 1 1 1 1 1 1 / / / / E	1) - 40 / 4 - 10 kills co

$$s^2 = (25 + 9 + 1 + 1 + 4) / (5 - 1) = 40 / 4 = 10$$
 kills squared

In Excel, =VAR(array)

"Larger" means "more spread" ... but units odd

Standard Deviation

- Square-root of variance
- Usually, use standard deviation instead of variance
 - Why? → Same units as data (e.g., "kills" in previous example)
- Can compare standard deviation to mean (coefficient of variation, next)
- But first:
 - Mendenhall's Empirical Rule
 - Z-score

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$$

Low Standard Deviation

A "thin" curve means that your winrates remain close to the mean average

High Standard Deviation

A "fat" curve means that there is a wider spread of your winrates.

Mendenhall's Empirical Rule

- 1. About 68% data within one standard deviation of mean
 - interval between mean-s and mean+s contains about 68% of data
- 2. About 95% within 2 standard deviations of mean
- 3. Almost all data within 3 standard deviations of mean

https://mathbitsnotebook.com/Algebra1/StatisticsData/normalgrapha.jpg

Rule assumes normal ("Bell curve") distribution

Z-Score

- Measure of how "far" from center (mean) single data point is
 - Not measure of dispersion for whole data set

			ftware.com/r			

<u>Example</u>				
Mean	469			
Std dev	119			
X	650			
Z-score for X?				
(650 – 469)/119	1.52			

Coefficient of Variation (CV)

- Size of standard deviation relative to mean
 - e.g., large sd & large mean, not so spread
 - but large sd & small mean, more spread
- Standard deviation divided by mean
 - Can do this since same units!
- CV is "unit-less", so measure of spread independent of quantity
 - E.g. seconds, clicks, spaces

Shown as percent (multiply by 100)

$$CV = \frac{s}{\overline{x}} \times 100$$

http://images.slideplayer.com/35/10391754/slides/slide_59.jpg

Different Means Same Standard Deviations

Different Means Different Standard Deviations

Semi-Interquartile Range

½ distance between Q3 (75th percentile) and Q1 (25th percentile)

 <u>Guideline</u>: use semi-interquartile (SIQR) for index of dispersion whenever using median as index of central tendency

Index of Dispersion Example

```
(sorted)
Lap Times
             First, sort. Then, compute:
  1.9
                - Mean = 4.4
  2.7
                - Min = 1.9, Max = 5.9
  3.9
                - Median = [16 / 2] = 8^{th} = 4.5
  4.1
                -Q1 = 16 / 4 = 8^{th} = 4.1
  4.2
  4.2
                - Q3 = 3 * 16 / 4 = 12<sup>th</sup> = 5.1
  4.4
  4.5
             • SIQR = (Q3 - Q1) / 2
                                            = 0.5
  4.5
  4.8

    Variance

                                            = 0.96
  4.9

    Stddev

                                            = 0.98
  5.1
             CV = stddev/mean
                                           = 0.22
  5.1
  5.3
             • Range = max – min
                                            = 4
  5.6
```

5.9

Breakout 4

- Group of 3!
- Rank measures of dispersion by sensitivity) to outliers
 - Variance
 - Range
 - Standard Deviation
 - Coefficient of Variation
 - Semi-interquartile Range

https://web.cs.wpi.edu/~imgd2905/d20/breakout/breakout-4.html

Ranking of Affect by Outliers?

Measure of Dispersion

- Variance
- Range
- Standard Deviation
- Coefficient of Variation
- Semi-interquartile Range

Most to Least

Ranking of Affect by Outliers?

Measure of Dispersion

- Variance
- Range
- Standard Deviation
- Coefficient of Variation
- Semi-interquartile Range

Most to Least

Range

susceptible

- Variance
 - Standard Deviation
 - Coefficient of Variation
- SIQR

resistant

Only for quantitative data!

categorical can't quantify spread since no 'distance'

Instead, give categories for given percentile of samples

e.g., "90% of samples are in 3 categories"

Depicting Dispersion in Charts

Histogram (next unit)

- Cumulative distribution (next unit)
- Box-and-Whiskers
- Error Bars

Box-and-Whiskers Chart

- Way of showing variation
- Highlight middle 50% (interquartile range, IQR)
 - "Box"
- Lines go to smallest non-outlier
 - "Whiskers"
- Points indicate outliers
- Middle line shows median
- Sometimes with mean
- - Formally, 1.5+ IQRs away from quartile
- Available in Excel

Also called "boxplot"

http://support.sas.com/documentation/cdl/en/vaug/65747/HTML/default/images/boxplot.png

https://support.office.com/en-us/article/Create-a-box-andwhisker-chart-62f4219f-db4b-4754-aca8-4743f6190f0d

Error Bars for Columns and Points

- Line through graph point parallel to axis with "caps"
- Denotes uncertainty (variation) in value
- X

Excel: click "+" → "Error Bars" → "type"

- Often:
 - 1 standard deviation
- Can be (discuss later):
 - 1 standard error
 - 1 confidence interval

https://s3.amazonaws.com/cdn.graphpad.com/faq/804/images/804b.jpg

http://www.excel-easy.com/examples/images/error-bars/error-bars.png