IMGD 2905

Probability

Chapters 4 \& 5

Even You Can Learn STATISTICS ANALYTICS
An Easy to Understand Guide
to Statistics and Analytics

Overview

- Statistics important for game analysis
- Probability important for statistics
- So, understand some basic probability
- Also, probability useful for game development

Symbols	No of combinations	Coins per win	Total coins paid
会会	1	160	160
O2, $\mathrm{OH}_{3} \mathrm{O}$	8	25	200
000	27	8	216
$\bigcirc \bigcirc$	64	4	256
A O\%	900	0	832

Breakout 4

- What are some examples of probabilities needed for game development?
- Provide a specific example

Icebreaker, Groupwork, Questions
https://web.cs.wpi.edu/~imgd2905/d21/breakou

Some examples of probabilities for game development?

Some examples of probabilities for game development?

- Probability attack will succeed
- Probability loot from enemy contains rare item
- Probability enemy spawns at particular time
- Probability action (e.g., building a castle) takes particular amount of time
- Probability players at server

Probability Introduction

- Probability - way of assigning numbers to outcomes to express likelihood of event

Likely
Certain
1

4-in-5 Chance

Outline

- Introduction (done)
- Probability
(next)
- Probability Distributions

Probability - Definitions

- Probability - way of assigning numbers to outcomes to express likelihood of event
- Event - outcome of experiment or observation
- Elementary - simplest type for given experiment. independent
- Joint/Compound - more than one elementary

Probability - Definitions

- Roll die (d6) and get 6
- elementary event
- Roll die (d6) and get even number
- compound event, consists of elementary events 2, 4, and 6
- Pick card from standard deck and get queen of spades
- elementary event
- Pick card from standard deck and get face card
- compound event
- Observe players logging in to MMO server, see if two people log in less than 15 minutes apart
- compound event

We'll treat/compute probabilities of elementary versus compound separately

Probability Definitions

- Exhaustive set of events set of all possible outcomes of experiment/observation
- Mutually exclusive sets of events - elementary events that do not overlap
- Roll d6: Events: 1, 2
- not exhaustive, mutually exclusive

Probability Definitions

- Roll d6: Events: 1, 2, 3, 4, 5, 6
- exhaustive, mutually exclusive
- Roll d6: Events: get even number, get number divisible by 3, get a 1 or get a 5
- exhaustive, but not mutually exclusive
- Observe logins: time between arrivals <10 seconds, $10+$ and <15 seconds inclusive, or 15+ seconds
- exhaustive, mutually exclusive
- Observe logins: time between arrivals <10 seconds, $10+$ and <15 seconds inclusive, or 10+ seconds
- exhaustive, but overlap

Probability - Definition

- Probability - likelihood of event to occur, ratio of favorable cases to all cases
- Set of rules that probabilities must follow
-Probabilities must be between 0 and 1 (but often written/said as percent)
- Probabilities of set of exhaustive, mutually exclusive events must add up to 1

Probability - Definition

- e.g., d6: events 1, 2, 3, 4, 5, 6. Probability of $1 / 6^{\text {th }}$ to each, sum of $P(1)$ $+P(2)+P(3)+P(4)+P(5)+P(6)=1$
\rightarrow legal set of probabilities
- e.g., d6: events 1, 2, 3, 4, 5, 6. Probability of $1 / 2$ to roll $1,1 / 2$ to roll 2 , and 0 to all the others sum of $P(1)+\ldots+P(6)$ $=0.5+0.5+0 \ldots+0=1$
\rightarrow Also legal set of probabilities
- Not how honest d6's behave in real life!

How to Assign Probabilities?

Assigning Probabilities

- Classical (by theory)
- In many cases, exhaustive, mutually exclusive outcomes equally likely \rightarrow assign each outcome probability of $1 / n$
- e.g., d6: 1/6, Coin: prob heads $1 / 2$, tails $1 / 2$, Cards: pick Ace 1/13
- Empirically (by observation)
- Obtain data through measuring/observing
- e.g., Watch how often people play FIFA 20 in FL222 versus some other game. Say, 30\% FIFA. Assign that as probability
- Subjective (by hunch)
- Based on expert opinion or other subjective method
- e.g., eSports writer says probability Fnatic (European LoL team) will win World Championship is 25\%

Rules About Probabilities (1 of 4)

- Complement: A an event. Event "Probability A does not occur" called complement of \underline{A}, denoted A^{\prime}

$$
P\left(A^{\prime}\right)=1-P(A) \quad Q: \text { why? }
$$

-e.g., d6: $P(6)=1 / 6$, complement is $\mathrm{P}\left(6^{\prime}\right)$ and probability of "not 6" is 1$1 / 6$, or 5/6.
-Note: Value often denoted p, complement is q

Rules About Probabilities (2 of 4)

- Mutually exclusive: Have no simple outcomes in common can't both occur in same experiment

$$
P(A \text { or } B)=P(A)+P(B)
$$

-"Probability either occurs"
-e.g., d6: $P(3$ or 6$)=P(3)+P(6)=$ $1 / 6+1 / 6=2 / 6$

Rules About Probabilities (3 of 4)

- Independent: Probability that one occurs doesn't affect probability that other occurs
-e.g., 2d6: A= die 1 get 5, B= die 2 gets
6 . Independent, since result of one roll doesn't affect roll of other
-"Probability both occur"

$$
P(A \text { and } B)=P(A) \times P(B)
$$

-e.g., 2d6: prob of "snake eyes" is $P(1)$
$x P(1)=1 / 6 \times 1 / 6=1 / 36$

Rules About Probabilities (4 of 4)

- Not independent: One occurs affects probability that other occurs
- Probability both occur

$$
P(A \text { and } B)=P(A) \times P(B \mid A)
$$

+ Where $P(B \mid A)$ means the prob B given A happened
- e.g., LoL chance of getting most kills 20\%. Chance of being support is 20\%. You might think that:
+ P(kills) \times P(support) $=0.2 \times 0.2=0.04$
- But likely not independent. P(kills | support) < 20\%. So, need non-independent formula
+ P(kills) * P(kills | support) (example next)

Probability Example

- Probability drawing King?

Probability Example

- Probability drawing King?

$$
P(K)=1 / 4
$$

- Draw, put back. Draw. Now?

Probability Example

- Probability drawing King?

$$
P(K)=1 / 4
$$

- Draw, put back. Draw. Now?

$$
P(K)=1 / 4
$$

- Draw. Probability not King?

Probability Example

- Probability drawing King?

$$
P(K)=1 / 4
$$

- Draw, put back. Draw. Now?

$$
P(K)=1 / 4
$$

- Draw. Probability not King?

$$
P\left(K^{\prime}\right)=1-P(K)=3 / 4
$$

- Draw, put back. Draw. 2 Kings?

Probability Example

- Probability drawing King?

$$
P(K)=1 / 4
$$

-Draw, put back. Draw. Now?

$$
P(K)=1 / 4
$$

- Draw. Probability not King?

$$
P\left(K^{\prime}\right)=1-P(K)=3 / 4
$$

- Draw, put back. Draw. 2 Kings?

$$
P(K) \times P(K)=1 / 4 \times 1 / 4=1 / 16
$$

Probability Example GA

- Draw. King or Queen?

Probability Example

- Draw. King or Queen?

$$
\begin{gathered}
P(K \text { or } Q)=P(K)+P(Q) \\
=1 / 4+1 / 4=1 / 2
\end{gathered}
$$

- Draw, put back. Draw. Not King either card?

Probability Example GA

- Draw. King or Queen?

$$
\begin{gathered}
P(\mathrm{~K} \text { or } Q)=P(K)+P(Q) \\
=1 / 4+1 / 4=1 / 2
\end{gathered}
$$

- Draw, put back. Draw. Not King either card?

$$
P\left(K^{\prime}\right) \times P\left(K^{\prime}\right)=3 / 4 \times 3 / 4=9 / 16
$$

- Draw, don't put back. Draw. Not King either card?

Probability Example GA

- Draw. King or Queen?

$$
\begin{gathered}
P(K \text { or } Q)=P(K)+P(Q) \\
=1 / 4+1 / 4=1 / 2
\end{gathered}
$$

- Draw, put back. Draw. Not King either card?

$$
P\left(K^{\prime}\right) \times P\left(K^{\prime}\right)=3 / 4 \times 3 / 4=9 / 16
$$

- Draw, don't put back. Draw. Not King either card?

$$
\begin{aligned}
& P\left(K^{\prime}\right) \times P\left(K^{\prime} \mid K^{\prime}\right)=3 / 4 \times(1-1 / 3) \\
&=3 / 4 \times 2 / 3 \\
&=6 / 12=1 / 2
\end{aligned}
$$

- Draw, don't put back. Draw. King $2^{\text {nd }}$ card?

Probability Example GA

- Draw. King or Queen?

$$
\begin{gathered}
P(K \text { or } Q)=P(K)+P(Q) \\
=1 / 4+1 / 4=1 / 2
\end{gathered}
$$

- Draw, put back. Draw. Not King either card?

$$
P\left(K^{\prime}\right) \times P\left(K^{\prime}\right)=3 / 4 \times 3 / 4=9 / 16
$$

- Draw, don't put back. Draw. Not King either card?

$$
\begin{aligned}
& P\left(K^{\prime}\right) \times P\left(K^{\prime} \mid K^{\prime}\right)=3 / 4 \times(1-1 / 3) \\
&=3 / 4 \times 2 / 3 \\
&=6 / 12=1 / 2
\end{aligned}
$$

- Draw, don't put back. Draw. King $2^{\text {nd }}$ card?

$$
P\left(K^{\prime}\right) \times P\left(K \mid K^{\prime}\right)=3 / 4 \times 1 / 3=3 / 12=1 / 4
$$

Outline

- Introduction (done)
- Probability
(done)
- Probability Distributions
(next)

Probability Distributions ©A

- Probability distribution - values and likelihood (expected value) that random variable can take
- Why? If can model mathematically, can use to predict occurrences
- e.g., probability slot machine pays out on given day
- e.g., probability game server hosts player today
- e.g., probability certain game mode is chosen by player
- Also, some statistical techniques for some distributions only

Probability Distributions

Types discussed:
Uniform (discrete)
Binomial (discrete)
Poisson (discrete)
Normal (continuous)

Uniform Distribution

- "So what?"
- Can use known formulas

Uniform Distribution
One six-sided die

Uniform Distribution

- "So what?"
- Can use known formulas

Mean $=(1+6) / 2=3.5$

Mean	$\frac{a+b}{2}$
Median	$\frac{a+b}{2}$
Mode	N/A
Variance	$\frac{(b-a+1)^{2}-1}{12}$

$$
\begin{aligned}
\text { Variance } & =\left((6-1+1)^{2}-1\right) / 12 \\
& =2.9 \\
\text { Std Dev } & =\operatorname{sqrt}(\text { Variance })=1.7
\end{aligned}
$$

Note - mean is also the expected value (if you did a lot of trials, would be average result)

Binomial Distribution Example (1 of 3)

- Suppose toss 3 coins
- Random variable $X=$ number of heads
- Want to know probability of exactly 2 heads

$$
P(X=2)=\text { ? }
$$

How to assign probabilities?

Binomial Distribution Example (1 of 3)

- Suppose toss 3 coins
- Random variable

$$
X=\text { number of heads }
$$

- Want to know probability of exactly 2 heads

$$
P(X=2)=\text { ? }
$$

- Could measure (empirical)
- Could use "hunch" (subjective)
- Could use theory (classical)
- Math using our probability rules (not shown)
- Enumerate (next)

Binomial Distribution Example (2 of 3)

All equally likely (p is $1 / 8$ for each)
$\rightarrow \mathrm{P}(\mathrm{HHT})+\mathrm{P}(\mathrm{HTH})+\mathrm{P}(\mathrm{THH})=3 / 8$

Binomial Distribution Example (3 of 3)

Flip n coins. Count the number of heads.

http://www.mathnstuff.com/math/spoken/here/2class/90/binom2.gif

These are all binomial distributions

Note, again expected value average amount you'd get if you did many trials

Binomial Distribution

 (1 of 3)- In general, any number of trials (n) \& any probability of successful outcome (p) (e.g., heads)

Binomial Distribution (2 of 3)

- Characteristics of experiment that gives random number with binomial distribution:
- Experiment consists of n identical trials.
- Trials are independent
- Each trial results in only two possible outcomes, S or F
- Probability of S each trial is same, denoted p
- Random variable of interest (X) is number of S's in n trials

Binomial Distribution
 - "So what?"
 (3 of 3)

- Can use known formulas

$$
\begin{aligned}
& M E A N: \mu=n p \\
& \text { Variance }: \sigma^{2}=n p q \\
& S D: \sigma=\sqrt{n p q}
\end{aligned}
$$

Excel: binom.dist()
binom.dist(x, trials, prob, cumulative)
-2 heads, 3 flips, coin, discrete
X眰 $=$ binom.dist ($2,3,0.5$, FALSE)
$=0.375$ (i.e., 3/8)
http://www.s-cool.co.uk/gifs/a-mat-sdisc-dia08.gif

Binomial Distribution Example

- Each row is like a coin flip

$$
\begin{aligned}
& \text { - right = "heads" } \\
& \text { - left = "tails" }
\end{aligned}
$$

- Bottom axis is number of heads
- Proves and "empirical" way to estimate $P(X)$

$$
\operatorname{bin}(1)+\ldots)
$$

$$
\begin{aligned}
& \text { - } \operatorname{bin}(\mathrm{X}) \text { / } \\
& \text { sum(bin(0) + }
\end{aligned}
$$

Poisson Distribution GA

- Distribution of probability of x events occurring in certain interval (into units)
- Interval can be time, area, volume, distance
- e.g., number of players arriving at server lobby in 5-minute period between noon-1pm
- Requires

1. Probability of event same for all time units
2. Number of events in one time unit independent of number of events in any other time unit
3. Events occur singly (not simultaneously). i.e., as interval unit gets smaller, probability two events occurring $\rightarrow 0$

Poisson Distributions?

Not Poisson

- Number of people arriving at restaurant during dinner hour
- People frequently arrive in groups
- Number of students registering for course in BannerWeb per hour on first day of registration
- Prob not equal - most register in first few hours
- Not independent - if too many register early, system crashes

Could Be Poisson

- Number of groups arriving at restaurant during dinner hour
- Number of logins to MMO during prime time
- Number of defects (bugs) per 100 lines of code
- People arriving at cash register (if they shop individually)

Phrase people use is random arrivals

Poisson Distribution GA

- Distribution of probability of x events occurring in certain interval
- "So what?"
- Can use known formulas

$$
P(X=x)=e^{-\lambda} \frac{\lambda^{x}}{x!}
$$

- $X=$ a Poisson random variable
- $x=$ number of events whose probability you are calculating
- $\lambda=$ the Greek letter "lambda," which represents the average number of events that occur per time interval
- $\mathrm{e}=$ a constant that's equal to approximately 2.71828

Poisson Distribution Example

1. Number of games student plays per day averages 1 per day
2. Number of games played per day independent of all other days
3. Can only play one game at a time

- What's probability of playing 2 games tomorrow?
- In this case, the value of $\lambda=1$, want $P(X=2)$

$$
P(X=2)=e^{-1} \frac{1^{2}}{2!}=0.1839
$$

Current Poisson Distribution Example

- New England city
- Average new COVID-19 cases 50/day
- Local hospital has 60 free beds
- What is the probability more than 60 in one day?

$$
P(X=x)=\mathrm{e}^{-\lambda} \frac{\lambda^{x}}{x!}
$$

Current Poisson Distribution Example

- New England city
- Average new COVID-19 cases 50/day
- Local hospital has 60 free beds
- What is the probability more than 60 in one day?

$$
P(X=x)=\mathrm{e}_{50}^{\sqrt{-\lambda} \lambda^{x!}}=\text { ??? }
$$

Current Poisson Distribution Example

https://stattrek.com/online-calculator/poisson.aspx

- New England city
- Average new COVID-19 cases 50/day
- Local hospital has 60 free beds
- What is the probability more than 60 in one day?

$$
P(X=x)=e_{50}^{\frac{-\lambda}{1} \lambda^{x!}}=0.02
$$60

	Average rate of success
Poisson Probability: $P(X=60)$	0.02010

Current Poisson Distribution Example

https://stattrek.com/online-calculator/poisson.aspx

- New England city
- Average new COVID-19 cases 50/day
- Local hospital has 60 free beds
- What is the probability more than 60 in one day?

$$
P(X=x)=e_{50}^{\frac{-\lambda}{1} \lambda^{x!}}=0.02
$$

Poisson random variable (x) 60

Average rate of success	50
Poisson Probability: $P(X=60)$	
Cumulative Probability: $\mathrm{P}(\mathrm{X}<60)$	0.90774
Cumulative Probability: $P(X \leq 60)$	0.92784
Cumulative Probability: $P(X>60)$	0.07216
Cumulative Probability: $P(X \geq 60)$	0.09226

Q: How do we get greater than 60?

$$
\begin{gathered}
P(0)+P(1)+\ldots+P(60) \rightarrow P(\leq 60) \\
P(>60)=1-P(\leq 60)
\end{gathered}
$$

Poisson Distribution GA

- "So what?" \rightarrow Known formulas

$$
P(X=x)=\mathrm{e}^{-\lambda} \frac{\lambda^{x}}{x!}
$$

- Mean = λ
- Variance $=\lambda$
- Std Dev = sqrt (λ)

Excel: poisson.dist() X 国 poisson.dist(x,mean, cumulative) mean 50 per day, 60 beds, chance >60 ?
= 1 - POISSON.DIST(60,50,TRUE)
$=0.07216$
e.g., Games \rightarrow may want to know likelihood of $1.5 x$ average people arriving at server

Expected Value - Formulation ©A

- Expected value of discrete random variable is value you'd expect after many experimental trials. i.e., mean value of population
Value:
$\begin{array}{lllll}x_{1} & x_{2} & x_{3} & \ldots & x_{n}\end{array}$
Probability: $\quad P\left(x_{1}\right) P\left(x_{2}\right) P\left(x_{3}\right) \ldots \quad P\left(x_{n}\right)$
- Compute by multiplying each value by probability and summing

$$
\begin{aligned}
& =\mathrm{E}(\mathrm{X})=x_{1} P\left(x_{1}\right)+x_{2} P\left(x_{2}\right)+\ldots+x_{n} P\left(x_{n}\right) \\
& =\Sigma x_{i} P\left(x_{j}\right)
\end{aligned}
$$

Expected Value Example Gambling Game

- Pay \$3 to enter
- Roll 1d6 \rightarrow 6? Get \$7 1-5? Get \$1

Outcome	Payoff	$P(x)$	$x P(x)$
$1-5$	$\$ 1$		
6	$\$ 7$???

Expected Value Example Gambling Game

- Pay \$3 to enter
- Roll 1d6 \rightarrow 6? Get \$7 1-5? Get \$1
- What is expected payoff?

Outcome	Payoff	$P(x)$	$x P(x)$
$1-5$	$\$ 1$	$5 / 6$	$\$ 5 / 6$
6	$\$ 7$	$1 / 6$	$\$ 7 / 6$

Expected Value Example Gambling Game

- Pay \$3 to enter
- Roll 1d6 \rightarrow 6? Get \$7 1-5? Get \$1
-What is expected payoff? Expected net?

Outcome	Payoff	$P(x)$	$x P(x)$
$1-5$	$\$ 1$	$5 / 6$	$\$ 5 / 6$
6	$\$ 7$	$1 / 6$	$\$ 7 / 6$
	$E(X)=\$ 5 / 6+\$ 7 / 6=$	$\$ 12 / 6=\$ 2$	
$E($ net $)=$			

Expected Value Example Gambling Game

- Pay \$3 to enter
- Roll 1d6 \rightarrow 6? Get \$7 1-5? Get \$1
-What is expected payoff? Expected net?

Outcome	Payoff	$P(x)$	$x P(x)$
$1-5$	$\$ 1$	$5 / 6$	$\$ 5 / 6$
6	$\$ 7$	$1 / 6$	$\$ 7 / 6$
	$E(X)=\$ 5 / 6+\$ 7 / 6=\$ 12 / 6=\$ 2$		
	$E($ net $)$	$=E(X)-\$ 3=\$ 2-\$ 3=\-1	

Outline GA

- Introduction
- Probability
(done)
(done)
- Probability Distributions
-Discrete (done)

So far random variable could take only discrete set of values

Q: What does that mean?
Q: What other distributions consider?

Outline GA

- Introduction (done)
- Probability
(done)
- Probability Distributions
-Discrete
-Continuous
(done)
(next)

Continuous Distributions

- Many random variables are continuous
- e.g., recording time (time to perform service) or measuring something (height, weight, strength)
- For continuous, doesn't make sense to talk about $\mathrm{P}(\mathrm{X}=\mathrm{x}) \rightarrow$ continuum of possible values for X
- Mathematically, if all nonzero, total probability infinite (this violates our rule)
- So, continuous distributions have probability density, $f(x)$
\rightarrow How to use to calculate probabilities?
- Don't care about specific values
e.g., P(Height =
60.1946728163 inches)
- Instead, ask about range of values

$$
\text { e.g., } P\left(59.5^{\prime \prime}<X<60.5^{\prime \prime}\right)
$$

- Uses calculus (integrate area under curve) (not shown here)

Normal Distribution

- "Bell-shaped" or "Bell-curve"
- Distribution from ∞ to $+\infty$
- Symmetric
- Mean, median, mode all same
- Mean determines location, standard deviation determines "width"

https://www.mathsistun.com/ddta/images/normal-distribution-2.2vg
- Super important!
- Lots of distributions follow a normal curve
- Basis for inferential statistics (e.g., statistical tests)
- "Bridge" between probability and statistics

Normal Distribution (2 of 2)

- Many normal distributions (see right)
- However, "the" normal distribution refers to standard normal
- Mean $(\mu)=0$
- Standard deviation (σ) = 1
- Can convert any normal to the standard normal
- Given sample mean ($\overline{\mathrm{x}}$)
- Sample standard dev. (s)

Standard Normal Distribution GA

- Standardize
- Subtract sample mean ($\overline{\mathrm{x}}$)
- Divide by sample standard deviation (s)
- Mean $\mu=0$
- Standard Deviation $\sigma=1$
- Total area under curve = 1

Sounds like probability!

$$
Z=\frac{X-\mu}{\sigma}=\frac{6.2-5}{10}=.12
$$

Standardized
Normal Distribution

http://imagesslideplayer.com/10/2753952/slides/slide_2.jpg

Use to predict how likely an observed sample is given population mean (next)

Using the Standard Normal

- Suppose League of Legends Champion released once every 24 days on average, standard deviation of 3 days
-What is the probability Champion released $30+$ days?
- $x=30, \bar{x}=24, s=3$

$$
\begin{aligned}
Z & =(x-\bar{x}) / s \\
& =(30-24) / 3 \\
& =2
\end{aligned}
$$

- Want to know P(Z > 2)

http://ci.columbia.edu/ci/premba_test/c0331/s6/s6_4.html

Q: how? Hint: what rule might help?

Using the Standard Normal

- Suppose League of Legends Champion released once every 24 days on average, standard deviation of 3 days
- What is the probability Champion released $30+$ days?
- $x=30, \bar{x}=24, s=3$
=norm. dist (x, mean, stddev, cumulative $)_{n t}$
= 1 - norm.dist (30, 24, 3, true)
Empirical Rule. Or use table (Z-table)
$\rightarrow 5 \% / 2=2.5 \%$ likely (Z-table is 2.28%)

Test for Normality GA

- Why?
- Can use Empirical Rule
- Use some inferential statistics (parametric tests)
- How?

1. Measure skewness (next)
2. Looks normal

+ Histogram
+ Normal probability plot (QQ plot) - graphical technique to see if data set is approximately normally distributed

3. Statistical test

+ Kolmogorov-Smirnov test (K-S) or Shapiro-Wilk (S-W) that compare to normal (won't do, but ideas in next slide deck)

Measuring Skewness

- Measure of symmetry

$$
\frac{\text { mean - mode }}{\text { standard deviation }} \quad \frac{\frac{Q_{3}+Q_{1}}{2}-Q_{2}}{\frac{Q_{3}-Q_{1}}{2}}
$$ of distribution

=skew(A1:A10)

- Normal is perfectly symmetric, skewness 0

$$
\frac{n}{(n-1)(n-2)} \sum\left(\frac{x_{j}-\bar{x}}{s}\right)^{3}
$$

Measuring Skewness

Anmerwpuar
Time

- "How much" is non-normal?
- Somewhat arbitrary
- Less than -1 or greater than +1
- Highly skewed
- Between [-1, -0.5] or [0.5, +1]
- Moderately skewed
- Between -0.5 and 0.5
- Symmetric
[Note, related "Kurtosis" is how clumped]

Skewness Examples

Score Distribution Test 3

Normality Testing with a Histogram

- Use histogram shape to look for "bell curve"

http://2.bp.blogspot.com/_g8gh714zSt4/TR85eGlIMfl
/AAAAAAAAAQ.s/PaOHIsjonPM/s1600/histo.JPG

No

Normality Testing with a Histogram

Samples of Size 15

Q: What distributions are these from? Any normal?

Normality Testing with a Histogram

Suffer from:

- Binning (not continuous)
- Few samples (15)

Samples of Size 15

They are all from normal distribution!

Normality Testing with a Quantile-Quantile Plot
 https://goo.gl/rLsia.

- Percentiles (quantiles) of one versus another
- If line \rightarrow same distribution

Quantile-Quantile Plot Example

- Do the following values come from a normal distribution?
7.19, 6.31, 5.89, 4.5, 3.77, 4.25, 5.19, 5.79, 6.79

1. Order data
2. Compute Z scores Show each
3. Plot data versus Z step, next

Quantile-Quantile Plot GA Example - Order Data

Unordered	Ordered
7.19	3.77
6.31	4.25
5.89	4.50
4.50	5.19
3.77	5.89
4.25	5.79
5.19	6.31
5.79	6.79
6.79	7.19

Quantile-Quantile Plot Example - Compute Z scores

$\left\{\begin{array}{c}\text { Divide into } \\ N+1=10\end{array}\right.$

Want Z-score for that segment

Quantile-Quantile Plot Example - Compute Z scores

Quantile-Quantile Plot Example - Plot

Linear? \rightarrow Normal

Quantile-Quantile Plots in Excel

- Mostly, a manual process. Do as per above. x目
- Example of step by step process (with spreadsheet):
http://facweb.cs.depaul.edu/cmiller/it223/normQuant.html

Examples of Normality Testing with a Quantile-Quantile Plot

(c)

