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• Have data (sample, x’s)
• Want to know likely 

value of next 
observation (Y)

‒ E.g., playtime versus 
skins owned

• A – reasonable to 
compute mean (with 
confidence interval)

• B – could do same, but 
there appears to be 
relationship between X 
and Y!
 Predict B
e.g., “trendline” 
(regression)

Motivation
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Q: Given previous Y’s, 
what is likely next Y?
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Broadly, two types of prediction techniques:
1. Regression – mathematical equation to 

model, use model for predictions
‒ We’ll discuss simple linear regression

2. Machine learning – branch of AI, use 
computer algorithms to determine 
relationships (predictions)

‒ CS 4342 Machine Learning

Overview



Types of Regression Models

• Explanatory variable explains dependent variable
‒ Variable X (e.g., skill level) explains Y (e.g., KDA)
‒ Can have 1 (simple) or 2+ (multiple)

• Linear if coefficients added, else Non-linear



Outline

• Introduction (done)
• Simple Linear Regression (next)

‒ Linear relationship
‒ Residual analysis
‒ Fitting parameters

• Measures of Variation
• Misc



Simple Linear Regression
• Goal – find a linear (line) relationship between two 

values
‒ E.g., KDA and skill, time and car speed

• First, make sure relationship is linear! How?
 Scatterplot

(c) no clear relationship
(b) not a linear relationship
(a) linear relationship – proceed with linear regression
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Linear Relationship
• From algebra: line in form

‒ m is slope, b is y-intercept
• Slope (m) is amount Y increases when X

increases by 1 unit
• Intercept (b) is where line crosses y-axis, 

or y-value when x = 0

Y = mX + b



Simple Linear Regression Example

• Size of house 
related to its 
market value

X = square footage
Y = market value ($)

• Scatter plot (42 
homes) indicates 
linear trend



• Two possible lines shown below (A and B)
• Want to determine best regression line
• Line A looks a better fit to data

‒ But how to know?

Simple Linear Regression Example

Y = mX + b

A

B



• Two possible lines shown below (A and B)
• Want to determine best regression line
• Line A looks a better fit to data

‒ But how to know?

Simple Linear Regression Example

Y = mX + b

Line that gives best 
fit to data is one 
that minimizes 
prediction error
Least squares line 

(more later) 

A

B



Simple Linear Regression Example
Chart

• Scatterplot
• Right click  Add Trendline



Simple Linear Regression Example
Formulas

=SLOPE(C4:C45,B4:B45)

• Slope  35.036
=INTERCEPT(C4:C45,B4:B45)

• Intercept  32,673

• Estimate Y when X = 1800 square feet?
Y = 35.036 x (1800) + 32,673 = $95,737.80



Simple Linear Regression 
Example

Market value = 32673 + 35.036 x (square feet)
• Predicts market value better than just 

average

But before use, examine residuals

Y = 35.036 X + 32673 



Outline

• Introduction (done)
• Simple Linear Regression

‒ Linear relationship (done)
‒ Residual analysis (next)
‒ Fitting parameters

• Measures of Variation
• Misc



Residual Analysis
• Before predicting, confirm linear regression 

assumptions hold
1. Variation around line is normally distributed 
2. Variation equal for all X
3. Variation independent for all X

• How? Compute residuals (error in prediction) 
 Chart



Residual Analysis
https://www.qualtrics.com/support/stats-iq/analyses/regression-guides/interpreting-residual-plots-improve-regression/

Variation around line normally distributed?
Variation equal for all X?
Variation independent for all X?



Residual Analysis – Good
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https://www.qualtrics.com/support/stats-iq/analyses/regression-guides/interpreting-residual-plots-improve-regression/



Patterns

O
ut

lie
rs

Cl
ea

r s
ha

pe

https://www.qualtrics.com/support/stats-iq/analyses/regression-guides/interpreting-residual-plots-improve-regression/

Residual Analysis – Bad

Note: could do 
normality test 

(QQ plot)



Residual Analysis – Summary 

• Regression 
assumptions:

1. Normality of 
variation around 
regression

2. Equal variation for 
all y values

3. Independence of 
variation

___________________
(a) ok
(b) funnel
(c) double bow
(d) nonlinear



Outline

• Introduction (done)
• Simple Linear Regression

‒ Linear relationship (done)
‒ Residual analysis (done)
‒ Fitting parameters (next)

• Measures of Variation
• Misc



Linear Regression Model
Y

X



Fitting the Best Line
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https://www.scribd.com/presentation/230686725/Fu-Ch11-Linear-Regression

• Plot all (Xi, Yi) Pairs
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• Plot all (Xi, Yi) Pairs
• Draw a line.  But how do we 
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Y Xi i i  b m 0

Linear Regression Model

• Relationship between variables is linear 
function, but with error term

Dependent 
(response) 

Variable
(e.g., kills)

Independent 
(explanatory) Variable 

(e.g., skill level)

Population 
Slope

Population 
Y-Intercept

Random 
Prediction 

Error

Want 
error as 
small as 
possible



Least Squares Line
• Want to minimize difference between actual 

y and predicted ŷ
‒ Add up i for all observed y’s
‒ But positive differences offset negative ones
‒ (remember when this happened for variance?)
 Square the errors!  Then minimize (Calculus)

Minimize:
Take derivative
Set to 0 and solve



EPI 809/Spring 2008

Least Squares Line Graphically
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https://www.scribd.com/presentation/230686725/Fu-Ch11-Linear-Regression



Least Squares Line Graphically

https://www.desmos.com/calculator/zvrc4lg3cr



Outline

• Introduction (done)
• Simple Linear Regression (done)
• Measures of Variation (next)

‒ Coefficient of Determination
‒ Correlation

• Misc



Measures of Variation

• Several sources of variation in y
‒ Error in prediction (unexplained)
‒ Variation from model (explained)

Break this 
down (next)



Sum of Squares of 
Error

• Least squares regression line with lowest 
total sum of squared prediction errors

• Sum of Squares of Error, or SSE

• Measure of unexplained variation

Independent variable (x)
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Sum of Squares 
Regression

• Differences between prediction and 
population mean

‒ Gets at variation due to X & Y
• Sum of Squares Regression, or SSR
• Measure of explained variation

Independent variable (x)
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Population 
mean: y



Sum of Squares 
Total

• Total Sum of Squares, or SST = SSR + SSE



Coefficient of Determination

• Proportion of total variation (SST)  explained by 
the regression (SSR) is known as the Coefficient 
of Determination (R2)

• Ranges from 0 to 1 (often said as a percent)
1 – regression explains all of variation
0 – regression explains none of variation



Coefficient of Determination –
Visual Representation

R2 = 1 -

Variation in 
observed 

data model 
cannot 
explain 
(error)

Total 
variation in 
observed 

data



Coefficient of Determination 
Example

• How “good” is regression model? Roughly:
0.8 <= R2 <= 1 strong
0.5 <= R2 <   0.8 medium
0    <= R2 <   0.5 weak



How “good” is the 
Regression Model? 



Relationships Between X & Y
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Strong relationships Weak relationships



Relationship Strength and 
Direction – Correlation 

• Correlation measures strength 
and direction of linear 
relationship

-1 perfect neg. to +1 perfect pos.
‒ Sign is same as regression slope
‒ Denoted R.  Why?  R = 2

Pearson’s Correlation 
Coefficient Vary 

together

Vary 
Separately



r = +.3 r = +1

Correlation Examples
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r = -1 r = -.6 r = 0

Also, a measure 
of “Effect Size”



Breakout 7

• Introduction
‒ If needed ... Introduce yourselves!
‒ Icebreaker: What game are you looking 

forward to playing this summer?

• Groupwork
‒ Think, discuss, write down – email answers

• Correlation
‒ Consider scatterplots
‒ Estimate correlation

https://web.cs.wpi.edu
/~imgd2905/d21/break

out/breakout-7.html



Correlation Examples
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Correlation Examples



Correlation Examples



Correlation Examples

Anscombe’s 
Quartet

Summary  stats: 
Meanx 9
Meany 7.5
Varx 11
Vary 4.125
Model:  y=0.5x+3

R2 = 0.69
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Correlation Summary



Correlation is not Causation

Buying sunglasses causes people to buy ice cream?



Correlation is not Causation

Importing lemons causes fewer highway fatalities?



Correlation is not Causation



Correlation is not Causation



Outline

• Introduction (done)
• Simple Linear Regression (done)
• Measures of Variation (done)
• Misc (next)

‒ Extrapolation and Interpolation
‒ Confidence Intervals
‒ Model fitting



Extrapolation versus 
Interpolation

• Prediction
‒ Interpolation –

within measured 
X-range

‒ Extrapolation –
outside measured 
X-range



Be Careful When 
Extrapolating

If extrapolate, make sure have reason 
to assume model continues



https://cdn-images-1.medium.com/max/1600/1*vcbjVR7uesKhVM1eD9IbEg.png

Prediction and Confidence 
Intervals (1 of 2)

Prediction interval
for Xi

Confidence interval
for mean



Prediction and Confidence 
Intervals (2 of 2)



Beyond Simple Linear Regression

• Multiple regression – more parameters beyond 
just X

‒ Book Chapter 11
• More complex models – beyond just Y = mX + b



More Complex Models

• Higher order polynomial model has less error
 A “perfect” fit (no error)
• How does a polynomial do this?



Graphs of Polynomial Functions

Higher degree, more potential “wiggles”
But should you use?



Underfit and Overfit

• Overfit analysis matches data too closely, more parameters than 
justified

• Underfit analysis does not adequately match since parameters are 
missing
 Both models fit well, but don’t predict well (i.e., non-observed values) 

• Just right – fit data well “enough” with as few parameters as possible 
(parsimonious - desired level of prediction with as few terms as possible)



Summary

• Can use regression to predict un-
measured values

• Before fit
‒ Visual relationship (scatter plot) and 

residual analysis
• Strength of fit – Coefficient of 

Determination (R2) and correlation (R)
• Beware

‒ Correlation is not causation
‒ Extrapolation

• Higher order, more complex models 
can fit better

‒ Beware of overfit  less predictive 
power


