IMGD 2905

Simple Linear Regression

Chapter 10

Even You Can Learn
STATISTICS
ANALYTICS
An Easy to Understand Guide

Motivation GA

- Have data (sample, x's)
- Want to know likely value of next observation (Y)
- E.g., playtime
- A: Given previous Y's, what is likely next Y?

Motivation GA

- Have data (sample, x's)
- Want to know likely value of next observation (Y)
- E.g., playtime skins owned
- A - reasonable to compute mean (with confidence interval)

Motivation GA

- Have data (sample, x's)
- Want to know likely value of next observation (Y)
- E.g., playtime skins owned
- A - reasonable to compute mean (with confidence interval)
- B - could do same?

Motivation GA

- Have data (sample, x's)
- Want to know likely value of next observation (Y)
- E.g., playtime skins owned
- A - reasonable to compute mean (with confidence interval)
- B - could do same, but there appears to be relationship between X and Y !

\rightarrow Predict B
e.g., "trendline"
(regression)

Motivation GA

- Have data (sample, x's)
- Want to know likely value of next observation (Y)
- E.g., playtime skins owned
- A - reasonable to compute mean (with confidence interval)
- B - could do same, but there appears to be relationship between X and Y !

\rightarrow Predict B
e.g., "trendline"
(regression)

Overview

Broadly, two types of prediction techniques:

1. Regression - mathematical equation to model, use model for predictions

- We'll discuss simple linear regression

2. Machine learning - branch of AI, use computer algorithms to determine relationships (predictions)

- CS 4342 Machine Learning

Classification

Types of Regression Models

- Explanatory variable explains dependent variable - Variable X (e.g., skill level) explains Y (e.g., KDA)
- Can have 1 (simple) or $2+$ (multiple)
- Linear if coefficients added, else Non-linear

Outline GA

- Introduction (done)
- Simple Linear Regression (next)
- Linear relationship
- Residual analysis
-Fitting parameters
- Measures of Variation
- Misc

Simple Linear Regression

- Goal - find a linear (line) relationship between two values
- E.g., KDA and skill, time and car speed
- First, make sure relationship is linear! How?

Simple Linear Regression GA

- Goal - find a linear (line) relationship between two values
- E.g., KDA and skill, time and car speed
- First, make sure relationship is linear! How?
\rightarrow Scatterplot
(c) no clear relationship
(b) not a linear relationship
(a) linear relationship - proceed with linear regression

(b) Nonlinear

(c) No relationship

Linear Relationship

- From algebra: line in form
$-m$ is slope, b is y-intercept
- Slope (m) is amount Y increases when X increases by 1 unit
- Intercept (b) is where line crosses y-axis, or y-value when $x=0$

Simple Linear Regression Example

- Size of house related to its market value

$$
\begin{aligned}
& X=\text { square footage } \\
& Y=\text { market value }(\$)
\end{aligned}
$$

- Scatter plot (42 homes) indicates linear trend

4	A	B	C
1	Home Market Value		
2			
3	House Age	Square Feet	Market Value
4	33	1.812	\$90,000.00
5	32	1.914	\$104,400.00
6	32	1.842	\$93,300.00
7	33	1.812	\$91,000.00
8	32	1.836	\$101,900.00
9	33	2.028	\$108,500.00
10	32	1.732	\$87,600.00

Simple Linear Regression Example

- Two possible lines shown below (A and B)
- Want to determine best regression line
- Line A looks a better fit to data
-But how to know?

$$
Y=m X+b
$$

Simple Linear Regression Example

- Two possible lines shown below (A and B)
- Want to determine best regression line
- Line A looks a better fit to data
- But how to know?

$$
Y=m X+b
$$

Line that gives best fit to data is one that minimizes
prediction error
\rightarrow Least squares line (more later)

Simple Linear Regression Example Chart

X圭

Format Trendline v x

- Scatterplot
- Right click \rightarrow Add Trendline

Trendline Options *
a) D ill

4 Trendline Options

Simple Linear Regression Example Formulas

=SLOPE (C4: C45, B4: B45)

- Slope $\rightarrow 35.036$

	A		B	C
1	Home Market Value			
2				
3	House Age		Square Feet	Market Value
4		33	1.812	\$90,000.00
5		32	1.914	\$104.400.00
6		32	1.842	\$93,300.00
7		33	1.812	\$91.000.00
8		32	1.836	\$101,900.00
9		33	2.028	\$108.500.00
10		32	1.732	\$87.600.00

=INTERCEPT (C4:C45, B4:B45)

- Intercept $\rightarrow 32,673$
- Estimate Y when $X=1800$ square feet? $Y=35.036 \times(1800)+32,673=\$ 95,737.80$

Simple Linear Regression Example

Market value $=32673+35.036 \times$ (square feet)

- Predicts market value better than just average

But before use, examine residuals

Outline GA

- Introduction (done)
- Simple Linear Regression
- Linear relationship
- Residual analysis
-Fitting parameters
- Measures of Variation
- Misc

Residual Analysis

- Before predicting, confirm linear regression assumptions hold

1. Variation around line is normally distributed
2. Variation equal for all X
3. Variation independent for all X

- How? Compute residuals (error in prediction)
\rightarrow Chart

Residual Analysis

Variation around line normally distributed?
Variation equal for all X?
Variation independent for all X?
https://www.qualtrics.com/support/stats-iq/analyses/regression-guides/interpreting-residual-plot-improve-regression/

Predicted vs Actual

Residual Analysis - Good

Residual Analysis - Bad

Residual Analysis - Summary

- Regression assumptions:

1. Normality of variation around regression
2. Equal variation for all y values

(a)

(c)

(b)

(d)

Outline GA

- Introduction (done)
- Simple Linear Regression
- Linear relationship
- Residual analysis
-Fitting parameters
- Measures of Variation
- Misc

Linear Regression Model

Observed value

Fitting the Best Line GA

- Plot all $\left(X_{i}, Y_{i}\right)$ Pairs

Fitting the Best Line

- Plot all $\left(X_{i}, Y_{i}\right)$ Pairs
- Draw a line. But how do we know it is best?

Fitting the Best Line

- Plot all $\left(X_{i}, Y_{i}\right)$ Pairs
- Draw a line. But how do we know it is best?

Fitting the Best Line

- Plot all $\left(X_{i}, Y_{i}\right)$ Pairs
- Draw a line. But how do we know it is best?

Fitting the Best Line

- Plot all $\left(X_{i}, Y_{i}\right)$ Pairs
- Draw a line. But how do we know it is best?

Linear Regression Model GA

- Relationship between variables is linear function, but with error term

Least Squares Line

- Want to minimize difference between actual y and predicted \hat{y}
- Add up ε_{i} for all observed y's
-But positive differences offset negative ones
- (remember when this happened for variance?)
\rightarrow Sauare the errors! Then minimize (Calculus)

Least Squares Line Graphically GA

LS minimizes $\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}=\hat{\varepsilon}_{1}^{2}+\hat{\varepsilon}_{2}^{2}+\hat{\varepsilon}_{3}^{2}+\hat{\varepsilon}_{4}^{2}$

Least Squares Line Graphically GA

Create new situations moving the green data points about the graph.

Line of Best Fit: Click the circle at the left to Show/Hide. Drag RED dots to position the line.Residuals: Click the circle at the left to Show/Hide.Squares: Click the circle at the left to Show/Hide.Least Squares Regression Line: Click the circle at the left to Show/Hide.

https://www.desmos.com/calculator/zvrc4lg3cr

Outline GA

- Introduction (done)
- Simple Linear Regression (done)
- Measures of Variation (next)
-Coefficient of Determination
- Correlation
- Misc

Measures of Variation GA

- Several sources of variation in y
- Error in prediction (unexplained)
- Variation from model (explained)

Break this down (next)

Sum of Squares of Error

Independent variable (x)

- Least squares regression line with lowest total sum of squared prediction errors
- Sum of Squares of Error, or SSE
- Measure of unexplained variation

Sum of Squares Regression

\section*{| 0 |
| :--- |
| 0 |
| 0.0 |
| $0 \frac{0}{0}$ |
| $\frac{0}{2}$ |
| $\frac{1}{4}$ |
| 0 |
| $\frac{0}{0}$ |
| $\frac{1}{0}$ |
| 0 |
| 0 |
| 0 |

 Independent variable (x)}

- Differences between prediction and population mean
- Gets at variation due to X \& Y
- Sum of Squares Regression, or SSR
- Measure of explained variation

Sum of Squares Total

- Total Sum of Squares, or SST = SSR + SSE

$$
\begin{gathered}
\mathrm{Y} \quad S S T=\sum_{i=1}^{i}\left(Y_{i}-\bar{Y}\right)^{2} \quad S S E=\sum_{i=1}^{i}\left(Y_{i}-\widehat{Y}_{i}\right)^{2} \\
S S R=S S T-S S E=\sum_{i=1}^{i}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}
\end{gathered}
$$

Coefficient of Determination GA

- Proportion of total variation (SST) explained by the regression (SSR) is known as the Coefficient of Determination (R^{2})

$$
R^{2}=\frac{S S R}{S S T}=1-\frac{S S E}{S S T}
$$

- Ranges from 0 to 1 (often said as a percent)

1 - regression explains all of variation
0 - regression explains none of variation

Coefficient of Determination - GA Visual Representation

Variation in observed data model cannot
explain
(error)

Total variation in observed data

Coefficient of Determination Example

- How "good" is regression model? Roughly:

$$
\begin{array}{ll}
0.8<=R^{2}<=1 & \text { strong } \\
0.5<=R^{2}<0.8 & \text { medium } \\
0<=R^{2}<0.5 & \text { weak }
\end{array}
$$

How "good" is the Regression Model?

I DON'T TRUST LINEAR REGRESSIONS WHEN ITS HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.
https://xkcd.com/1725/

Relationships Between X \& Y GA

Weak relationships

Relationship Strength and Direction - Correlation

- Correlation measures strength and direction of linear relationship
-1 perfect neg. to +1 perfect pos.
- Sign is same as regression slope
- Denoted R. Why? $R=\sqrt{R^{2}}$

$$
\begin{gathered}
\begin{array}{c}
\text { Pearson's Correlation } \\
\text { Coefficient }
\end{array} \begin{array}{c}
\text { Vary } \\
\text { together } \\
\text { i }
\end{array} \\
r=\frac{\Sigma(X-\bar{X})(Y-\bar{Y})}{\sqrt{\Sigma(X-\bar{X})^{2}} \sqrt{(Y-\bar{Y})^{2}}} \text { Separy } \\
\text { Sately }
\end{gathered}
$$

Where, \bar{X}-mean of X variable
\bar{Y}-mean of Y variable

POSITIVE CORRELATIOON

ZERO CORRELATION

NEGATIVE CORRELATION

Correlation Examples

$r=-.6$

Breakout 7

- Introduction
- If needed ... Introduce yourselves!
- Icebreaker: What game are you looking forward to playing this summer?
- Groupwork
- Think, discuss, write down - email answers
- Correlation
- Consider scatterplots
https://web.cs.wpi.edu
~imgd2905/d21/break
- Estimate correlation

Correlation Examples

GA

Correlation Examples

GA

Correlation Examples

Correlation Examples

Correlation Summary

Correlation is not Causation

Buying sunglasses causes people to buy ice cream?

Correlation is not Causation GA

Importing lemons causes fewer highway fatalities?

Correlation is not Causation

Correlation is not Causation

https://xkcd.com/552/

Outline GA

- Introduction
(done)
- Simple Linear Regression (done)
- Measures of Variation (done)
- Misc
(next)
-Extrapolation and Interpolation
- Confidence Intervals
- Model fitting

Extrapolation versus Interpolation

- Prediction
- Interpolation within measured X-range
- Extrapolation outside measured X-range

Be Careful When Extrapolating

Prediction and Confidence Intervals (1 of 2)

Prediction and Confidence Intervals (2 of 2)

95\% Confidence Bands

95\% Prediction Bands

Beyond Simple Linear Regression GA

- Multiple regression - more parameters beyond just X
- Book Chapter 11
- More complex models - beyond just

$$
Y=m X+b
$$

More Complex Models

- Higher order polynomial model has less error \rightarrow A "perfect" fit (no error)
- How does a polynomial do this?

Graphs of Polynomial Functions ©A

Cubic Function
(deg. = 3)

Quartic Function (deg. = 4)

Quadratic Function (degree = 2)

Quintic Function
(deg. $=5$)

Higher degree, more potential "wiggles" But should you use?

Underfit and Overfit

ntras:/hted imgur.som/tart pig

Just Right

Overfit

- Overfit analysis matches data too closely, more parameters than justified
- Underfit analysis does not adequately match since parameters are missing
\rightarrow Both models fit well, but don't predict well (i.e., non-observed values)
- Just right - fit data well "enough" with as few parameters as possible (parsimonious - desired level of prediction with as few terms as possible)

Summary

- Can use regression to predict unmeasured values
- Before fit
- Visual relationship (scatter plot) and residual analysis
- Strength of fit - Coefficient of Determination (R^{2}) and correlation (R)
- Beware
- Correlation is not causation
- Extrapolation
- Higher order, more complex models can fit better
- Beware of overfit \rightarrow less predictive power

