IMGD 2905

Simple Linear Regression

Chapter 10

Have data (sample, x's)
Want to know likely value of next observation (Y)

 \wedge

Y

- E.g., playtime
- A Q: Given previous Y's, what is likely next Y?

- Want to know likely value of next observation (Y)
 - E.g., playtime skins owned
- A reasonable to compute mean (with confidence interval)

- Have data (sample, x's)
- Want to know likely value of next observation (Y)
 - E.g., playtime skins owned
- A reasonable to compute mean (with confidence interval)
- B could do same?

Motivation GA

- Have data (sample, x's)
- Want to know likely value of next observation (Y)
 - E.g., playtime skins owned
- A reasonable to compute mean (with confidence interval)
- B could do same, but there appears to be relationship between X and Y!
- \rightarrow Predict B
- e.g., "trendline" (regression)

Motivation GA

- Have data (sample, x's)
- Want to know likely value of next observation (Y)
 - E.g., playtime skins owned
- A reasonable to compute mean (with confidence interval)
- B could do same, but there appears to be relationship between X and Y!
- \rightarrow Predict B
- e.g., "trendline" (regression)

Overview

Broadly, two types of prediction techniques:

- 1. Regression mathematical equation to model, use model for predictions
 - -We'll discuss simple linear regression
- 2. Machine learning branch of AI, use computer algorithms to determine relationships (predictions)
 - CS 4342 Machine Learning

Types of Regression Models GA

- Explanatory variable *explains* dependent variable
 - Variable X (e.g., skill level) explains Y (e.g., KDA)
 - Can have 1 (simple) or 2+ (multiple)
- Linear if coefficients added, else Non-linear

Outline GA

- Introduction (done)
- Simple Linear Regression (next)
 - Linear relationship
 - Residual analysis
 - Fitting parameters
- Measures of Variation
- Misc

Simple Linear Regression GΔ

- Goal find a linear (line) relationship between two values
 - E.g., KDA and skill, time and car speed
- First, make sure relationship is linear! How?

Simple Linear Regression

- Goal find a linear (line) relationship between two values
 - E.g., KDA and skill, time and car speed
- First, make sure relationship is linear! How?
- \rightarrow Scatterplot
 - (c) no clear relationship
 - (b) not a linear relationship
 - (a) linear relationship proceed with linear regression

Linear Relationship

From algebra: line in form
 m is slope, b is y-intercept

$$Y = mX + b$$

- Slope (m) is amount Y increases when X increases by 1 unit
- Intercept (b) is where line crosses y-axis, or y-value when x = 0

Simple Linear Regression Example

-	A	В	C
1	Home Market Va		
2			
3	House Age	Square Feet	Market Value
4	33	1,812	\$90,000.00
5	32	1,914	\$104,400.00
6	32	1,842	\$93,300.00
7	33	1,812	\$91,000.00
8	32	1,836	\$101,900.00
9	33	2,028	\$108,500.00
10	32	1,732	\$87,600.00

 Size of house related to its market value

> X = square footage Y = market value (\$)

 Scatter plot (42 homes) indicates linear trend

Simple Linear Regression Example

- Two possible lines shown below (A and B)
- Want to determine best regression line
- Line A looks a better fit to data
 - But how to know?

Simple Linear Regression Example

- Two possible lines shown below (A and B)
- Want to determine best regression line
- Line A looks a better fit to data
 - But how to know?

Line that gives best fit to data is one that minimizes prediction error →Least squares line (more later)

Simple Linear Regression Example Chart

X≣

×

Format Trendline

Trendline Options *

 $\langle \rangle$

- Scatterplot
- Right click \rightarrow Add Trendline

Simple Linear Regression Example Formulas

	A	В	C
1	Home Market Va		
2			
3	House Age	Square Feet	Market Value
4	33	1,812	\$90,000.00
5	32	1,914	\$104,400.00
6	32	1,842	\$93,300.00
7	33	1,812	\$91,000.00
8	32	1,836	\$101,900.00
9	33	2,028	\$108,500.00
10	32	1,732	\$87,600.00

=**SLOPE**(C4:C45,B4:B45)

Slope → 35.036

=INTERCEPT(C4:C45,B4:B45)

- Intercept \rightarrow 32,673
- Estimate Y when X = 1800 square feet?
 Y = 35.036 x (1800) + 32,673 = \$95,737.80

Simple Linear Regression Example

Market value = 32673 + 35.036 x (square feet)

• Predicts market value better than just

But before use, examine residuals

Introduction

(done)

- Simple Linear Regression
 - Linear relationship
 - Residual analysis

(done) (next)

- Fitting parameters
- Measures of Variation

• Misc

Residual Analysis

- Before predicting, confirm linear regression assumptions hold
 - 1. Variation around line is normally distributed
 - 2. Variation equal for all X
 - 3. Variation independent for all X
- How? Compute residuals (error in prediction)

 \rightarrow Chart

Residual Analysis

Variation around line normally distributed? Variation equal for all X? Variation independent for all X?

Clustered towards middle

Residual Analysis – Summary GA

Regression assumptions:

- 1. Normality of variation around regression
- 2. Equal variation for all y values
- 3. Independence of variation

Introduction

- (done)
- Simple Linear Regression
 - Linear relationship
 - Residual analysis
 - Fitting parameters

- (done) (done) (next)
- Measures of Variation
- Misc

Fitting the Best Line GA
Plot all (X_i, Y_i) Pairs

Fitting the Best Line GA

- Plot all (X_i, Y_i) Pairs
- Draw a line. But how do we know it is best?

Fitting the Best Line GA

- Plot all (X_i, Y_i) Pairs
- Draw a line. But how do we know it is best?

Linear Regression Model GA

 Relationship between variables is linear function, but with error term

Least Squares Line

- Want to minimize difference between actual y and predicted \hat{y}
 - $-Add up \mathcal{E}_i$ for all observed y's
 - But positive differences offset negative ones
 - -(remember when this happened for variance?)

 \rightarrow Square the errors! Then minimize (Calculus)

Minimize: Take derivative Set to 0 and solve

Least Squares Line Graphically GA

https://www.desmos.com/calculator/zvrc4lg3cr

- Introduction (done)
- Simple Linear Regression (done)
- Measures of Variation (next)
 - Coefficient of Determination
 - Correlation
- Misc

-Variation from model (explained)

Independent variable (x)

- Least squares regression line with lowest total sum of squared prediction errors
- Sum of Squares of Error, or SSE
- Measure of unexplained variation

Independent variable (x)

- Differences between prediction and population mean
 - Gets at variation due to X & Y
- Sum of Squares Regression, or SSR
- Measure of explained variation

Coefficient of Determination GA

 Proportion of total variation (SST) explained by the regression (SSR) is known as the Coefficient of Determination (R²)

$$\frac{R^2}{R^2} = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

Ranges from 0 to 1 (often said as a percent)
 1 – regression explains all of variation
 0 – regression explains none of variation

Coefficient of Determination Example

• How "good" is regression model? Roughly:

 $0.8 \le R^2 \le 1$ strong $0.5 \le R^2 < 0.8$ medium

$$0 <= R^2 < 0.5$$
 weak

How "good" is the Regression Model? GA

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

https://xkcd.com/1725/

Relationships Between X & Y GA

Relationship Strength and Direction – Correlation

- Correlation measures strength and direction of linear relationship
 - -1 perfect neg. to +1 perfect pos.
 - Sign is same as regression slope

- Denoted R. Why? $R = \sqrt{R^2}$

Breakout 7

- Introduction
 - If needed ... Introduce yourselves!
 - Icebreaker: What game are you looking forward to playing this summer?
- Groupwork

-Think, discuss, write down - email answers

- Correlation
 - Consider scatterplots
 - Estimate correlation

https://web.cs.wpi.edu /~imgd2905/d21/break out/breakout-7.html

Correlation Examples GA

https://upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Correlation_examples2.svg/1200pxCorrelation_examples2.svg.prg

Correlation Examples GA

https://upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Correlation_examples2.org/1200px-Correlation_examples2.org.png

12 -12 -.... y₂ y1 14 16 14 16 18 \mathbf{x}_1 X_2 y₃ y4 8 14 16 18 X₃ X_4

Correlation Examples

Correlation Summary

Correlation is not Causation GA

Buying sunglasses *causes* people to buy ice cream?

Correlation is not Causation GA

Importing lemons causes fewer highway fatalities?

Correlation is not Causation

Correlation is not Causation GA

https://xkcd.com/552/

Outline GA

- Introduction (done)
- Simple Linear Regression (done)
- Measures of Variation (done)
- Misc

- (next)
- Extrapolation and Interpolation
- Confidence Intervals
- Model fitting

https://qph.ht.quoracdn.net/main.qimg.d2972a7aca8c9d11859H2d07fce1799

×

Prediction and Confidence GA Intervals (2 of 2)

Beyond Simple Linear Regression GA

Multiple regression – more parameters beyond just X

Y = mX + b

- Book Chapter 11
- More complex models beyond just

- Higher order polynomial model has less error
- \rightarrow A "perfect" fit (no error)
- How does a polynomial do this?

- Overfit analysis matches data too closely, more parameters than justified
- Underfit analysis does not adequately match since parameters are missing
- \rightarrow Both models fit well, but don't *predict* well (i.e., non-observed values)
- Just right fit data well "enough" with as few parameters as possible (*parsimonious* desired level of prediction with as few terms as possible)

Summary

- Can use regression to predict unmeasured values
- Before fit
 - Visual relationship (scatter plot) and residual analysis
- Strength of fit Coefficient of Determination (R²) and correlation (R)
- Beware
 - Correlation is not causation
 - Extrapolation
- Higher order, more complex models can fit better
 - Beware of overfit \rightarrow less predictive power