IMGD 2905

Inferential Statistics

Chapter 6 \& 7

Overview

- Use statistics to infer population parameters

We have these to work with

[^0]
Overview

- Use statistics to infer population parameters

We have these to work with

Outline

- Overview
- Foundation
- Inferring Population Parameters
- Hypothesis Testing
(done)
(next)

Groupwork

- Remember, probability distribution shows possible outcomes on x-axis and probability of each on y-axis.

1. Describe the probability distribution of 1 d 6 ?
2. Describe the probability distribution of 2 d 6 ?
3. Describe the probability distribution of 3 d 6 ?

- Icebreaker, Groupwork, Questions https://web.cs.wpi.edu/~imgd2905/d22/groupwork/6-prob-dist/handout.html

Dice Rolling (1 of 4)

- Have 1d6, sample (i.e., roll 1 die)
- What is probability distribution of values?

Dice Rolling (1 of 4)

- Have 1d6, sample (i.e., roll 1 die)
- What is probability distribution of values?

[^1]
Dice Rolling (2 of 4)

- Have 1d6, sample twice and sum (i.e., roll 2 dice)
- What is probability distribution of values?

Dice Rolling (2 of 4)

- Have 1d6, sample twice and sum (i.e., roll 2 dice)
- What is probability distribution of values?

Two Six-sided Dice

Dice Rolling (3 of 4)

- Have 1d6, sample thrice and sum (i.e., roll 3 dice)
- What is probability distribution of values?

Dice Rolling (3 of 4)

- Have 1d6, sample thrice and sum (i.e., roll 3 dice)
- What is probability distribution of values?

Dice Rolling (3 of 4)

- Have 1d6, sample thrice and sum (i.e., roll 3 dice)
- What is probability distribution of values?

> What's happening to the shape?

Dice Rolling (4 of 4)

- Same holds for general experiments with dice (i.e., observing sample sum and mean of dice rolls)

http://www.muelaner.com/uncertainty-of-measurement/
Ok, neat - for "square" distributions (e.g., d6). But what about experiments with other distributions?

Sampling Distributions

- With large "enough" sample size, looks "bell-shaped" \rightarrow Norma!!

Sampling Distributions

- With large "enough" sample size, looks "bell-shaped" \rightarrow Norma!!

Sampling Distributions

- With large "enough" sample size, looks "bell-shaped" \rightarrow Norma!!

Sampling Distributions

- With large "enough" sample size, looks "bell-shaped" \rightarrow Norma!!

Sampling Distributions

- With large "enough" sample size, looks "bell-shaped" \rightarrow Norma!!

Sampling Distributions

- With large "enough" sample size, looks "bell-shaped" \rightarrow Norma!!

Parent Population

Sampling Distributions

- With large "enough" sample size, looks "bell-shaped" \rightarrow Normal!
- How many is large enough?
- 30 (15 if symmetric distribution)

Sampling

Distributions

- With large "enough" sample size, looks "bell-shaped" \rightarrow Normal!
- How many is large enough?
- 30 (15 if symmetric distribution)
- Central Limit Theorem
- Sum of independent variables tends towards Normal distribution

Sampling Distributions of x for $\mathrm{n}=2$

Sampling Distributions of x for $\mathrm{n}=30$

Why do we care about sample means following Normal distribution?

- What if we had only a sample mean and no measure of spread
- e.g., mean score is 3
- What can we say about population mean?
- Not a whole lot!
- Yes, population mean could be 6. But could be 0. How likely are each?
\rightarrow No idea!

Sample mean
Population mean?

Why do we care about sample means following Normal distribution?

- Remember this?

With mean and standard deviation

http://www.six-sigma-material.com/images/PopSamples.GIF
Allows us to predict range to bound population mean (see next slide)

Why do we care about sample means following Normal distribution?

Outline

- Overview
- Foundation
- Inferring Population Parameters
- Hypothesis Testing
(done)
(done)
(next)

Estimating Population Mean

- Underlying data follows uniform probability distribution (d6)
- But assume population mean unknown

Q: How do we estimate the population mean?

Estimating Population Mean

- Underlying data follows uniform probability distribution (d6)
- But assume population mean unknown
(Example)
Sample
Sample Mean
Q: How do we estimate the population mean?

1 d6 4.0
$2 \mathrm{~d} 6(4+2) / 2=\quad 3.0$
$3 \mathrm{~d} 6(1+6+2) / 3=2.3$
$4 \mathrm{~d} 6(4+4+2+3) / 4=3.3$

Estimating Population Mean

- Q: What happens as sample size increases?
- Q: How big a sample do we need?

Estimating Population Mean

- Q: What happens as sample size increases?
- Q: How big a sample do we need?
- Depends upon how much varies
- Values that are not the mean contribute to "error" \rightarrow
sampling error
https://demonstrations.wolfram.com/La wOfLargeNumbersDiceRollingExample/

Sampling Error

- Error from estimating population parameters from sample statistics is sampling error
- Exact error often cannot be known (do not know population parameters)
- But size of error based on:
- Variation in population (σ) itself - more variation, more sample statistic variation (s)
- Sample size (N) - larger sample, lower error
- Q: Why can't we just make sample size super large?
- How much does it vary? \rightarrow Standard error

Standard Error

- Amount sample means will vary from experiment to experiment of same size
- Standard deviation of the sample means
- Also, likelihood that sample statistic is near population parameter
- What does the size of the standard error depend upon? (Hint: see formula above)
 standard

${ }^{\text {ertor }} \mathrm{SE}=\frac{\mathrm{S}}{\sqrt{n}}-\underset{ }{\text { sample }}$

Eompe

$$
\begin{aligned}
& n=5 \\
& S=17
\end{aligned}=\frac{17}{\sqrt{5}}
$$

SE $=7.6$

So what? Reason about population mean e.g., 95% confident that sample mean is within ~ 2 SE's
(where does this come from?)

Standard Error

- Amount sample means will vary from experiment to experiment of same size
- Standard deviation of the sample means
- Also, likelihood that sample statistic is near population parameter
- Depends upon sample size (N)
- Depends upon standard deviation (s)
(Example next)
So what? Reason about population mean e.g., 95% confident that sample mean is within ~ 2 SE's
(where does this come from?)

Standard Error (2 of 2)

standard error, 100 experiments, N=3

If $\mathrm{N}=20$:
What will happen to x 's? What will happen to dots?

$$
\text { If } N=20 \text { : }
$$

What will happen to means? What will happen to bars?
How many will cross the blue line?

Groupwork!

Groupwork

1. How many of the bars intersect the blue?
2. What do graphs look like $N=100$?
3. Now, how many bars intersect?

- Standard Error
https://web.cs.wpi.edu/~imgd2905/d22/groupwork/7-se/handout.html

Standard Error (2 of 2)

standard error, 100 experiments, N=3

$$
\text { If } \mathrm{N}=20 \text { : }
$$

What will happen to x 's? What will happen to dots?

$$
\text { If } N=20 \text { : }
$$

What will happen to means? What will happen to bars?
How many will cross the blue line?

Standard Error (2 of 2)

Estimate population parameter \rightarrow confidence interval

Confidence Interval

- Range of values with specific certainty that population parameter is within
- e.g., 90% confidence interval for mean League of Legends match duration: [28.5 minutes, 32.5 minutes]

Confidence Interval for Mean

- Probability of μ in interval [$\mathrm{c}_{1}, \mathrm{c}_{2}$]
$-P\left(c_{1} \leq \mu \leq c_{2}\right)=1-\alpha$
[c1, c2] is confidence interval
α is significance level 100(1- α) is confidence level
- Typically want α small so confidence level 90\%, 95% or 99% (more on effect later)

So, do we have to do k experiments, each of size n ?!

- Say, $\alpha=0.1$. Could do k experiments (size n), find sample means, sort
- Graph distribution
- Interval from distribution:
- Lower bound: 5\%
- Upper bound: 95\%
$\rightarrow 90 \%$ confidence interval

Confidence Interval Estimate

- Estimate interval from 1 experiment, size n
- Compute sample mean (\bar{x}), sample standard error (SE)
- Multiply SE by t distribution
- Add/subtract from sample mean
\rightarrow Confidence interval
- Ok, what is t distribution?
- Function, parameterized by α and n

t distribution

- Looks like standard normal, but bit "squashed"
- Gets more squashed as n gets smaller
- Note, can use standard normal (z distribution) when large enough sample size ($\mathrm{n}=30+$)

Computing a Confidence Interval -

Example

(Unsorted)
$3.8 \quad 3.2$
$2.8 \quad 4.1$
$4.2 \quad 3.3$
$2.8 \quad 2.8$
$2.9 \quad 4.2$
$1.9 \quad 3.1$
$5.9 \quad 4.5$
$3.9 \quad 4.5$
3.24 .8
$4.1 \quad 4.9$
$\begin{array}{ll}5.3 & 5.1\end{array}$
$3.6 \quad 3.7$
$5.1 \quad 3.4$
$2.7 \quad 5.6$
$3.9 \quad 3.1$

- Suppose gathered game times in a user study (e.g., for your MQP)
- Can compute sample mean, yes
- But really want to know where population mean is
\rightarrow Bound with confidence interval

Computing a Confidence Interval -

 Example(Sorted)

Game Time	
1.9	3.9
2.7	3.9
2.8	4.1
2.8	4.1
2.8	4.2
2.9	4.2
3.1	4.4
3.1	4.5
3.2	4.5
3.2	4.8
3.3	4.9
3.4	5.1
3.6	5.1
3.7	5.3
3.8	5.6
3.9	5.9

- $\bar{x}=3.90$, stddev $s=0.95, n=32$
- A 90\% confidence interval (α is 0.1) for population mean (μ):

$$
\begin{aligned}
3.90 & \pm \frac{1.696 \times 0.95}{\sqrt{32}} \\
& =[3.62,4.19]
\end{aligned}
$$

Meaning of Confidence Interval (α)

How does Confidence Interval Size Change?

- With sample size (N)
- With confidence level (1- α)

Look at each separately next

How does Confidence Interval Change

(1 of 2)?

- What happens to confidence interval
when sample size (N)
increases?
- Hint: think about

Standard Error

How does Confidence Interval Change

(1 of 2)?

- What happens to confidence interval when sample size (N) increases?
- Hint: think about Standard Error

How does Confidence Interval Change

(2 of 2)?

- What happens to
confidence interval when confidence level
(1- α) increases?
- $90 \% \mathrm{Cl}=[6.5,9.4]$
- 90% chance population value is between 6.5, 9.4
- $95 \% \mathrm{Cl}=$
- 95\% chance population value is between

How does Confidence Interval Change

(2 of 2)?

- What happens to confidence interval when confidence level (1- α) increases?
- $90 \% \mathrm{Cl}=[6.5,9.4]$
- 90% chance population value is between 6.5, 9.4
- $95 \% \mathrm{Cl}=[6.1,9.8]$
- 95\% chance population value is between 6.1, 9.8
- Why is interval wider
 when we are "more" confident? See distribution on the right

Groupwork -

Interpreting a Confidence Interval

https://web.cs.wpi.edu/~imgd2905/d22/groupwork /9-conf-interp/handout.html

Using Confidence Interval (1 of 3)

- For charts, depict with error bars
- Cl different than standard deviation
- Standard deviation show spread
- Cl bounds population parameter (decreases with N)
\rightarrow Cl indicates range of population parameter

Make sure sample size $\mathrm{N}=30+$ ($\mathrm{N}=15+$ if somewhat normal.

Using Confidence Interval (2 of 3)
 https://measuringu.com/ci-10things/

No overlap

Large overlap

Some overlap

Compare two alternatives, quick check for statistical significance

- No overlap? $\rightarrow 90 \%$ confident difference (at $\alpha=0.10$ level)
- Large overlap ($50 \%+$)? \rightarrow No statistically significant diff (at $\alpha=0.10$ level)
- Some overlap? \rightarrow more tests required

Using Confidence Interval (3 of 3) [Some Overlap]

But if compute difference, and then confidence interval does not cross 0 ! (Caused by error propagation)

Not Using Confidence Intervals

"The confidence intervals of the two groups overlap, hence the difference is not statistically significant" - A lot of People

- Overlap - careful not to say statistically significant difference (see previous slide)
- Do not quantify variability (e.g., 95\% of values in interval)

Statistical Significance versus Practical Significance (1 of 2)

Warning: may find statistically significant difference.
That doesn't mean it is important.

It's a Honey of an 0

Statistical Significance versus Practical Significance (1 of 2)

Warning: may find statistically significant difference.
 That doesn't mean it is important.

It's a Honey of an 0

- Boxes of Cheerios, Tastee-O's both target 12 oz .
- Measure weight of 18,000 boxes
- Using statistics:
- Cheerio's heavier by 0.002 oz.
- And statistically significant ($\alpha=0.99$) !
- But ... 0.0002 is only 2-3 O's.

Customer doesn't care!

Statistical Significance versus Practical Significance (2 of 2)

Warning: may find statistically significant difference.
 That doesn't mean it is important.

It's a Honey of an 0

- Boxes of Cheerios, Tastee-O's both target 12 oz .
- Measure weight of 18,000 boxes
- Using statistics:
- Cheerio's heavier by 0.002 oz.
- And statistically significant ($\alpha=0.99$)!
- But ... 0.0002 is only 2-3 O's.

Customer doesn't care!

Latency can Kill?

- Lag in League of Legends
- Pay \$\$ to upgrade Ethernet from $100 \mathrm{Mb} / \mathrm{s}$ to $1000 \mathrm{Mb} / \mathrm{s}$
- Measure ping to LoL server for 20,000 samples
- Using statistics
- Ping times improve 0.8 ms
- And statistically significant ($\alpha=0.99$)!
- But ... below perception!

Effect Size

- Quantitative measure of strength of finding
- Measures practical significance
- Emphasizes size of difference of relationship

Effect size $=$	Mean of experimen Relative size Effect size	\% of control group below the mean of experimental group
Small	0.0	50%
Medium	0.2	58%
Large	0.5	69%
	0.8	79%
1.4	92%	

https://www.simplypsychology.org/cohen-d.jpg
Similar to Z-score $\quad z=\frac{X-\bar{X}}{s}$

What Confidence Level to Use (1 of 2)?

- Often see 90% or 95% (or even 99%) used
- Choice based on loss if wrong (population parameter is outside), gain if right (parameter inside)
- If loss is high compared to gain, use higher confidence
- If loss is low compared to gain, use lower confidence
- If loss is negligible, lower is fine
- Example (loss high compared to gain):
- Hairspray, makes hair straight, but has chemicals
- Want to be 99.9\% confident it doesn't cause cancer
- Example (loss low compared to gain):
- Hairspray, makes hair straight, mainly water
- Ok to be 75% confident it straightens hair

What Confidence Level to Use (2 of 2)?

- Often see 90% or 95% (or even 99%) used
- Choice based on loss if wrong (population parameter is outside), gain if right (parameter inside)
- If loss is high compared to gain, use higher confidence
- If loss is low compared to gain, use lower confidence
- If loss is negligible, lower is fine
- Example (loss negligible compared to gain):
- Lottery ticket costs $\$ 1$, pays $\$ 5$ million
- Chance of winning is 10^{-7} (50\% payout, so 1 in 10 million)
- To win with 90% confidence, need 9 million tickets
- No one would buy that many tickets ($\$ 9$ mil to win $\$ 5 \mathrm{mil}$)!
- So, most people happy with 0.0001% confidence

Outline

- Overview
- Foundation
- Inferring Population Parameters
- Hypothesis Testing
(done)
(done)
(done)
(next)

Hypothesis Testing

- Term arises from science
- State tentative explanation \rightarrow hypothesis
- Devise experiments to gather data
- Data supports or rejects hypothesis
- Statisticians have adopted to test using inferential statistics
\rightarrow Hypothesis testing

Hypothesis Testing Terminology

- Null Hypothesis $\left(\mathrm{H}_{0}\right)$ - hypothesis that no significance difference between measured value and population parameter (any observed difference due to error)
- e.g., population mean time for Riot to bring up NA servers is 4 hours
- Alternative Hypothesis - hypothesis contrary to null hypothesis
- e.g., population mean time for Riot to bring up NA servers is not 4 hours
- Care about Alternate, but test Null
- If data supports, Alternate may not be true
- If data rejects, Alternate may be true
- Why Null and Alternate?
- Remember, data doesn't "prove" hypothesis
- Can only reject it (at certain significance)
- P value - smallest level that can reject H_{0}
"If p value is low, then H_{0} must go"
- How "low" based on "risk" of being wrong (like confidence interval)

http://www.buzzle.com/img/articlelmages/605910-49223-57.jpg
- So, reject Null

Hypothesis Testing Steps

1. State hypothesis (H) and null hypothesis $\left(H_{0}\right)$
2. Evaluate risks of being wrong (based on loss and gain), choosing significance (α) and sample size
3. Collect data (sample), compute statistics
4. Calculate p value based on test statistic and compare to α
5. Make inference

- Reject H_{0} if p value less than α
- So, H may be right
- Do not reject H_{0} if p value greater than α
- So, H may not be right

Hypothesis Testing Steps (Example)

- State hypothesis (H) and null hypothesis $\left(\mathrm{H}_{0}\right)$
- H: Mario level takes less than 5 minutes to complete
- H_{0} : Mario level takes 5 minutes to complete (H_{0} always has $=$)
- Evaluate risks of being wrong (based on loss and gain), choosing significance (α) and sample size (N)
- Player may get frustrated, quit game, so $\alpha=0.1$
- Without measure of variation, 30 (Central Limit Theorem)
- Collect data (sample), compute statistics
- 30 people play level, compute average minutes, compare to 5
- E.g., mean of 4.1 minutes
- Calculate p value based on test statistic and compare to α
-P value $=0.02, \alpha=0.1$
- "How likely is it that the true mean is 5 when measure 4.1?"
- Make inference
- Here: p value less than $\alpha \rightarrow$ REJECT H_{0}, so H may be right
- Note, would not have rejected H_{0} if p value greater than α

Depiction of P Value

Probability density of each outcome, computed under Null hypothesis p-value is area under curve past observed data point (e.g., sample mean)

E.g.,
mean Mario time of 4.1. Is 5 minutes in the "unlikely" region?

A p-value (shaded green area) is the probability of an observed (or more extreme) result assuming that the null hypothesis is true.

Groupwork

1. In Hypothesis testing, the Null Hypothesis
2. Game development team wants new model assessed. Steps?
https://web.cs.wpi.edu/~imgd2905/d22/groupwork/ 10-hypo-testing/handout.html

Groupwork

1. In Hypothesis testing, the Null Hypothesis (HO) is:
a. sample mean is within a standard error of the population mean
b. no significance difference between measured and population
c. the sample mean equals the population mean
d. all of the above
e. none of the above

Groupwork

2. Your game development team wants to see if the new Hero model they created is played more often than the old Hero (10\%). They task you with doing this assessment. What steps do you take?
a. Gather data
b. Compute sample mean
c. Set hypotheses
d. Test (compute p value)
e. Analyze results to accept or reject

[^0]: http://3.bp.blogspot.com/_94E2PdKwaXE/S-xQRuoiKAI/AAAAAAAAABY/xvDRcG_Mcj0/s1600/120909_0159_1.png

[^1]: http://www.investopedia.com/articles/06/probabilitydistribution.asp

