IMGD 2905

Presenting Data

Chapter 2

Outline

• Types of Charts

- Game Analytics Examples
- Guidelines for Charts

Tables

 Generally, independent variable in left column and dependent variables next

Table 1. Number of student on campus and off by year

- Number and caption
- Units labeled (as appropriate)
- Minimal vertical lines (or none)
- Lines only to break apart areas (or use Bold)

Make sure to consider *message*. Often much clearer in chart!

"Right" Chart Depends on Variable Type

- Qualitative (Categorical) variables
 - Can have states or subclasses
 - e.g., position: [striker, goalie, midfield]
 - Can be ordered or unordered
 - e.g., bronze, silver, gold \rightarrow ordered
 - e.g., support, warrior, specialist \rightarrow unordered
- Quantitative (Numeric) variables
 - Numeric levels
 - Discrete or continuous
 - e.g., goals in season, speed in meters
 - e.g., takedowns, win percentage

Categorical: Bar Chart (1 of 2)

- Chart containing rectangles ("bars") where length represents count, amount, or percent (aka "column chart")
- Better than table for comparing numbers

Categorical: Bar Chart (2 of 2)

• Chart containing rectangles ("bars") where length represents count, amount, or percent

Summer games

Winter games

Categorical: Pareto Chart

- Bar chart, arranged most to least frequent
- Line showing cumulative percent
- Helps identify most common

Sort by column D (Data -> Sort high to low) New column E for percent [=D2/SUM(D\$2:D\$11)] Note: \$ "locks" value in (e.g., D\$2 versus D2) New column F for running [=SUM(E\$2:E2)] Select B, D and F. Insert "combo chart"

Categorical: Pie Chart

- Wedge-shaped areas ("pie slices") – represent count, amount or percent of each category from whole
- Compare relative amounts at a glance
- Best if few slices since quantifying "size" of pie difficult
- Comparing pies also difficult

Demo: <u>imgdpops.xlsx</u>

Time playing with Team Fortress 2

"The Effects of Latency and Jitter on a First Person Shooter: Team Fortress 2"

http://www.cs.wpi.edu/~claypool/iqp/tf2/

Histogram

• Bar chart for grouped numerical data

Select GPA data Insert \rightarrow Statistics Chart \rightarrow Histogram Can adjust bins, overflow/underflow

Stem and Leaf Display

 "Histogram-lite" for analysis w/out software – e.g., points on homework

https://www.mathsisfun.com/data/stem-leaf-plots.html

Cumulative Distribution

- Cumulative amount of data with value or less
- Easy to see min, max, median
- Compare shapes of distributions

Demo: <u>lol-patches.xlsx</u>

Select column R (Bug Fixes) Sort low to high New column S for percent [=ROW()/164] Select column \rightarrow paste down all Select both column R and S Insert \rightarrow Scatter plot with lines

"Nerfs, Buffs and Bugs - Analysis of the Impact of Patching on League of Legends" <u>http://www.cs.wpi.edu/~claypool/papers/lol-crawler/</u>

Time Series Plot

- Associate data with date
- Line graph with dates (proportionally spaced!)

2007

2008

Crime Rate (number of reported violent crimes per 100,000 population)

2010

2011

2009

Two Variables – Scatter Plot

Hours of study vs. Test scores

15 20 25

Test scores

- Two numerical variables, one on each axis
- Reveal patterns in relationship
- Setup "right" models (later)

Radar Chart (1 of 2)

Game Skill Comparision

- Also called "star", "spider", "web" or "kiviat" charts
- Good for quick visual comparison, especially when axes unequal

Demo: <u>lol-rates.xlsx</u>

Select top line {win, pick, ban} + 3 row s (Ctrl-select) Insert \rightarrow Other \rightarrow Radar scatter plot

https://www.exceltip.com/wp-content/uploads/2019/11/00213.png

Note: need to normalize data to scale Axes Insert column E ("B Norm") =E2/MAX(E\$2:E42) Copy and paste down

Radar Charts (2 of 2)

- Note, axes themselves hard to read values
- Value is to compare shapes

https://www.data-toviz.com/caveat/spider.html

Many More Charts!

https://en.wikipedia.org/wiki/Chart

- Bubble
- Waterfall
- Tree
- Gap
- Polar
- Violin
- Candlestick
- Kagi

- Gantt
- Nolan
- Pert
- Smith
- Skyline
- Vowel
- Nomogram
- Natal
- If common chart effective for message, use
- Otherwise, learn/use other charts as needed
- But remember may need to explain how to read

Outline

- Types of Charts
- Game Analytics Examples
- Guidelines for Charts

(done) (<mark>next</mark>)

Game Analytics Charts

Gunter Wallner and Simone Kriglstein. "An Introduction to Gameplay Data Visualization", *Game Research Methods*, pages 231-250, ETC Press, ISBN: 978-1-312-88473-1, 2015. <u>http://dl.acm.org/citation.cfm?id=2812792</u>

- Player choices (e.g., build units)
- Density of activities (e.g., where spend time on map)
- Movement through levels

Player Choices – Pie-Chart

Figure 1. Pie-charts show which types of towers have been built on the different building lots. The radius of the pie-chart is proportional to the number of towers built (Kayali, et al., 2014). (Custom game, comparative study)

Player Location – Heat Map (1 of 2)

Figure 2. (a) Heatmap of death locations on the Team Fortress 2 map Goldrush. (b) Heatmap showing locations where players of a tower defense game collected coins dropped by defeated enemies (Kayali, et al., 2014).

Player Location – Heat Map (2 of 2)

Assassin's Creed

Where play testers failed

Result: Make red areas easier

http://www.gamasutra.com/blogs/JonathanDankoff/20140320/213624 /Game_Telemetry_with_DNA_Tracking_on_Assassins_Creed.php

Note, Heat Map for Tables, Too!

	Α	В	С	D
1		2014	2015	2016
2	January	600	708	594
3	February	607	984	749
4	March	901	886	908
5	April	608	615	835
6	May	715	833	734
7	June	520	663	618
8	July	731	521	950
9	August	709	663	987
10	September	633	863	979
11	October	533	651	841
12	November	996	958	749
13	December	792	717	875

Excel tutorial at: <u>https://trumpexcel.com/heat-map-excel/</u>

Movement (1 of 2)

(game: *Infinite Mario*, clone of Super Mario Bros.)

Figure 4. Examples of path visualizations coupled with color-coding to communicate additional information. Top: color coding reflects the reported expertise of players obtained through a pre-game survey. Middle: colors depict the state in which the player's character currently resides in. Bottom: the color-gradient reflects physiological data measured in the form of galvanic skin response (Mirza-Babaei, et al., 2014).

Movement (2 of 2)

Figure 5. Left: Player movement between regions, cities, and battlegrounds on the World of Warcraft continent Outland. Right: Corresponding matrix view with cells colored according to the number of players moving from one area to another.

Outline

- Types of Charts
- Game Analytics Examples
- Guidelines for Charts

```
(done)
(done)
(next)
```


Guidelines for Good Charts (1 of 7)

- Require minimum effort from reader
 - Perhaps most important metric
 - Given two, can pick one that takes less reader effort

Guidelines for Good Charts (2 of 7)

Maximize information

- Make self-sufficient
- Key words in place of symbols
 - e.g., "Gold IV" and not "Player A"
 - e.g., "Daily Games Played" not "Games Played"
- Axis labels as informative as possible
 - e.g., "Game Time (seconds)" not "Game Time"
- Help by using captions (or title, if stand-alone)
 - e.g., "Game time in seconds versus player skill in total hours played"

http://www.phplot.com/phplotdocs/conc-labels.html

Guidelines for Good Charts (3 of 7)

• Minimize ink

https://www.slideshare.net/NicoleMarinsek/darkhorse-line-chart

Guidelines for Good Charts (4 of 7)

- Use commonly accepted practices
 - Present what people expect
 - e.g., origin at (0,0)
 - e.g., independent (cause) on x-axis,
 dependent (effect) on y-axis
 - e.g., x-axis scale is linear
 - e.g., increase left to right, bottom to top
 - e.g., scale divisions equal, proportional
- Departures are permitted but require extra effort from reader → so use sparingly!

VS.

Guidelines for Good Charts (5 of 7)

- Avoid ambiguity
 - Show coordinate axes
 - at right angles
 - Show origin
 - usually at (0,0)
 - Identify individual curves and bars
 - With key/legend or label
 - Do not plot multiple variables on same chart
 - Single y-axis

http://www.carltonassociatesinc.com/images/confusion-new.jpg

Guidelines for Good Charts (6 of 7)

- Don't connect categorical data with lines
 - Lines joining successive points signify that they can be approximately interpolated
 - If don't have meaning, should not use line chart

Guidelines for Good Charts (6 of 7)

• Can deceive as easily as can convey meaning

Groupwork Improving Bad Charts

- Work Solo: Study chart. Identify improvements. Write down.
- 2. Work as a Team: Compare lists. Discuss.
- 3. Write down combined.

https://web.cs.wpi.edu/~imgd2905/d22/groupwork /2-bad-charts/handout.html

Checklist for Good Charts

• Axes

- Are both axes labeled?
- Are the axis labels self-explanatory and concise?
- Are the scale and divisions shown on both axes?
- Are the min and max ranges appropriate?
- Are the units indicated?

• Lines/Curves/Points

- Is the number of lines/curves reasonably small?
- Are curves labeled?
- Are all symbols clearly distinguishable?
- Is a concise, clear legend provided?
- Does the legend obscure any data?

Information

- If the y-axis is variable, is an indication of spread (error bars) shown?
- Are grid lines required to read data (if not, then remove)?

• Scale

- Are units increasing left to right (xaxis) and bottom to top (y-axis)?
- Do all charts use the same scale?
- Are the scales contiguous?
- Is bar chart order systematic?
- Are bars appropriate width, spacing?

Overall

- Does the whole chart add information to reader?
- Are there no curves/symbols/text that can be removed and still have the same information?
- Does the chart have a title or caption (not both)?
- Is the chart self-explanatory and concise?
- Do the variables plotted give more information than alternatives?
- Is chart referenced and discussed in any accompanying report?

Describing Chart in Report & Presentation

- "Formula"
 - Describe all axes
 - E.g., "The x-axis is time since game began, in seconds"
 - Describe data sets/trendlines
 - E.g., "The blue dots are the average maze completion time"
 - Then provide message
 - E.g., "Notice how the red bar is higher than the blue, indicating that ..."
- Example on Web page

🗖 Return to the cs2905 Home Page

http://web.cs.wpi.edu/~imgd2905/d20 /samples/analysis-example.html

sources, for example Metacritic ratings. In previous work we found that games with higher ratings are more likely to be completed

Guidelines for Good Charts (Summary)

- For each chart, go over "checklist"
- The more "yes" answers, the better
 - Remember, while guidelines, art and not science
 - So, may consciously decide not to follow these guidelines if better without them → but have good reason!
- In practice, takes several trials before arriving at "best" chart
- Want to present message the most: accurately, simply, concisely, logically
- Accompany with description! Text or verbal
 - Remember, audience/reader has not seen! Make sure to introduce

