IMGD 2905

Presenting Data

Chapter 2
THIRD EDITION

An Easy to Understand Guide to Statistics and Analytics

David M. Levine and David F. Stephan

Outline

- Types of Charts

(next)

- Game Analytics Examples
- Guidelines for Charts

Tables

- Generally, independent variable in left column and dependent variables next

Table 1. Number of student on campus and off by year

- Number and caption
- Units labeled (as appropriate)
- Minimal vertical lines (or none)
- Lines only to break apart areas (or use Bold)

Make sure to consider message. Often much clearer in chart!

"Right" Chart Depends on Variable Type

- Qualitative (Categorical) variables
- Can have states or subclasses
- e.g., position: [striker, goalie, midfield]
- Can be ordered or unordered
- e.g., bronze, silver, gold \rightarrow ordered
- e.g., support, warrior, specialist \rightarrow unordered
- Quantitative (Numeric) variables
- Numeric levels
- Discrete or continuous
- e.g., goals in season, speed in meters
- e.g., takedowns, win percentage

Categorical: Bar Chart (1 of 2)

- Chart containing rectangles ("bars") where length represents count, amount, or percent (aka "column chart")
- Better than table for comparing numbers

20
https://www.kristakingmath.com/blog/bar-graphs-and-pie-chart

Categorical: Bar Chart (2 of 2)

- Chart containing rectangles ("bars") where length represents count, amount, or percent

cateporicai: pareto chart

- Bar chart, arranged most to least frequent
- Line showing cumulative percent
- Helps identify most common

Pareto Diagram

https://usercontent2.hubstatic.com/3767965_f520.jpg

Sort by column D (Data -> Sort high to low) New column E for percent [=D2/SUM(D\$2:D\$11)] Note: \$"locks" value in (e.g., D\$2 versus D2) New column F for running [=SUM(E\$2:E2)] Select B, D and F. Insert "combo chart"

Categorical: Pie Chart

- Wedge-shaped areas ("pie slices") represent count, amount or percent of each category from whole
- Compare relative amounts at a glance
- Best if few slices since quantifying "size" of pie difficult
- Comparing pies also difficult
"The Effects of Latency and Jitter on a First Person Shooter: Team Fortress 2"

Histogram

- Bar chart for grouped numerical data
- No (or small) gaps btwn adjacent bars

Bar Graph

Histogram

Stem and Leaf Display

- "Histogram-lite" for analysis w/out software
- e.g., points on homework

https://www.mathsisfun.com/data/stem-leaf-plots.html

Cumulative Distribution

- Cumulative amount of data with value or less
- Easy to see min, max, median
- Compare shapes of distributions

Demo: lol-patches.x|sx
Select column R (Bug Fixes)
Sort low to high

New column S for percent [=ROW()/164] Select column \rightarrow paste down all Select both column R and S Insert \rightarrow Scatter plot with lines
"Nerfs, Buffs and Bugs - Analysis of the Impact of Patching on League of Legends" http://www.cs.wpi.edu/~claypool/papers/lol-crawler/

Time Series Plot

Crime Rate (number of reported violent crimes per 100,000 population)

- Associate data with date
- Line graph with dates (proportionally spaced!)

Demo: majors.xlsx
Sel. year and majors Insert \rightarrow Line Chart
\rightarrow More Line Charts

Two Variables Scatter Plot

- Two numerical variables, one on each axis
- Reveal patterns in relationship
- Setup "right" models (later)

Radar Chart (1 of 2)

Game Skill Comparision

- Also called "star", "spider", "web" or "kiviat" charts
- Good for quick visual comparison, especially when axes unequal

Demo: lol-rates.x|sx

Select top line $\{$ win, pick, ban\} +3 row s (Ctrl-select) Insert \rightarrow Other \rightarrow Radar scatter plot

Note: need to normalize data to scale Axes Insert column E ("B Norm")
=E2/MAX(E\$2:E42)
Copy and paste down

Radar Charts (2 of 2)

- Note, axes themselves hard to read values
- Value is to compare shapes

Many More Charts!

https://en.wikipedia.org/wiki/Chart

- Bubble
- Waterfall
- Tree
- Gap
- Polar
- Violin
- Candlestick
- Kagi
- Gantt
- Nolan
- Pert
- Smith
- Skyline
- Vowel
- Nomogram
- Natal
- If common chart effective for message, use
- Otherwise, learn/use other charts as needed
- But remember - may need to explain how to read

Outline

- Types of Charts
- Game Analytics Examples
- Guidelines for Charts

Game Analytics Charts

Gunter Wallner and Simone Kriglstein. "An Introduction to Gameplay Data Visualization", Game Research Methods, pages 231-250, ETC Press, ISBN: 978-1-312-88473-1, 2015.
http://dl.acm.org/citation.cfm?id=2812792

- Player choices (e.g., build units)
- Density of activities (e.g., where spend time on map)
- Movement through levels

Player Choices - Pie-Chart

Figure i. Pie-charts show which types of towers have been built on the different building lots. The radius of the pie-chart is proportional to the number of towers built (Kayali, et al., 2014).

Player Location - Heat Map (1 of 2)

Figure 2. (a) Heatmap of death locations on the Team Fortress 2 map Goldrush. (b) Heatmap showing locations where players of a tower defense game collected coins dropped by defeated enemies (Kayali, et al., 2014).

Player Location - Heat Map (2 of 2)

Assassin's Creed
Where play testers failed

Result: Make red areas easier

Note, Heat Map for Tables, Too!

4	A	B	C	D
1		$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$
2	January	600	708	594
3	February	607	984	749
4	March	901	886	908
5	April	608	615	835
6	May	715	833	734
7	June	520	663	618
8	July	731	521	950
9	August	709	663	987
10	September	633	863	979
11	October	533	651	841
12	November	996	958	749
13	December	792	717	875

Excel tutorial at: https://trumpexcel.com/heat-map-excel/

\section*{| 1 |
| :--- |
| | Movement (1}

(game: Infinite Mario, clone of Super Mario Bros.)

Figure 4. Examples of path visualizations coupled with color-coding to communicate additional information. Top: color coding reflects the reported expertise of players obtained through a pre-game survey. Middle: colors depict the state in which the player's character currently resides in. Bottom: the color-gradient reflects physiological data measured in the form of galvanic skin response (Mirza-Babaei, et al., 2014).

Movement (2 of 2)

Figure 5. Left: Player movement between regions, cities, and battlegrounds on the World of Warcraft continent Outland. Right: Corresponding matrix view with cells colored according to the number of players moving from one area to another.

Outline

- Types of Charts
- Game Analytics Examples
- Guidelines for Charts
(done)
(done)
(next)

GENERAL QUALITY OF CHARTS AND GRAPHS IN SCIENTIFIC PAPERS

Guidelines for Good Charts (1 of 7)

- Require minimum effort from reader
- Perhaps most important metric
- Given two, can pick one that takes less reader effort

Guidelines for Good Charts (2 of 7)

- Maximize information
- Make self-sufficient
- Key words in place of symbols
- e.g., "Gold IV" and not "Player A"
- e.g., "Daily Games Played" not "Games Played"
- Axis labels as informative as possible
- e.g., "Game Time (seconds)" not "Game Time"
- Help by using captions (or title, if stand-alone)
- e.g., "Game time in seconds versus player skill in total hours played"

http://www.phplot.com/phplotdocs/conc-labels.html

Guidelines for Good Charts (3 of 7)

- Minimize ink

https://www.slideshare.net/NicoleMarinsek/darkhorse-line-chart

Guidelines for Good Charts (4 of 7)

- Use commonly accepted practices
- Present what people expect
- e.g., origin at $(0,0)$
- e.g., independent (cause) on x-axis, dependent (effect) on y-axis
- e.g., x-axis scale is linear
- e.g., increase left to right, bottom to top
- e.g., scale divisions equal, proportional
- Departures are permitted but require extra effort from reader \rightarrow so use sparingly!

vs.

Guidelines for Good Charts (5 of 7)

- Avoid ambiguity
- Show coordinate axes
- at right angles
- Show origin
- usually at $(0,0)$
- Identify individual curves and bars
- With key/legend or label
- Do not plot multiple variables on same chart
- Single y-axis

VS.

Guidelines for Good Charts (6 of 7)

- Don't connect categorical data with lines
- Lines joining successive points signify that they can be approximately interpolated
- If don't have meaning, should not use line chart

- No linear relationship between champion types
- Instead, use column chart
- Don't connect with lines

Guidelines for Good Charts (6 of 7)

- Can deceive as easily as can convey meaning

EXAMPLE 2: Amount of Land Planted with Grapes for the Wine Industry.

Groupwork Improving Bad Charts

1. Work Solo: Study chart. Identify improvements. Write down.
2. Work as a Team: Compare lists. Discuss.

[Figure7]
3. Write down combined.
https://web.cs.wpi.edu/~imgd2905/d22/groupwork
/2-bad-charts/handout.html

Checklist for Good Charts

- Axes
- Are both axes labeled?
- Are the axis labels self-explanatory and concise?
- Are the scale and divisions shown on both axes?
- Are the min and max ranges appropriate?
- Are the units indicated?
- Lines/Curves/Points
- Is the number of lines/curves reasonably small?
- Are curves labeled?
- Are all symbols clearly distinguishable?
- Is a concise, clear legend provided?
- Does the legend obscure any data?
- Information
- If the y-axis is variable, is an indication of spread (error bars) shown?
- Are grid lines required to read data (if not, then remove)?
- Scale
- Are units increasing left to right (xaxis) and bottom to top (y-axis)?
- Do all charts use the same scale?
- Are the scales contiguous?
- Is bar chart order systematic?
- Are bars appropriate width, spacing?
- Overall
- Does the whole chart add information to reader?
- Are there no curves/symbols/text that can be removed and still have the same information?
- Does the chart have a title or caption (not both)?
- Is the chart self-explanatory and concise?
- Do the variables plotted give more information than alternatives?
- Is chart referenced and discussed in any accompanying report?

Describing Chart in Report \& Presentation

- "Formula"
- Describe all axes
- E.g., "The x-axis is time since game began, in seconds"
- Describe data sets/trendlines
- E.g., "The blue dots are the average maze completion time"
- Then provide message
- E.g., "Notice how the red bar is higher than the blue, indicating that ..."
- Example on Web page

http://web.cs.wpi.edu/~imgd2905/d20 /samples/analysis-example.html

Guidelines for Good Charts (Summary)

- For each chart, go over "checklist"
- The more "yes" answers, the better
- Remember, while guidelines, art and not science
- So, may consciously decide not to follow these guidelines if better without them \rightarrow but have good reason!
- In practice, takes several trials before arriving at "best" chart
- Want to present message the most: accurately, simply, concisely, logically
- Accompany with description! Text or verbal
- Remember, audience/reader has not seen! - Make sure to introduce

