IMGD 2905

Descriptive Statistics

Chapter 3

Summarizing Data

- With lots of playtesting, there is a lot of data

 This is a good thing!
- But raw data is often just a pile of numbers
 - Rarely of interest
 - Or even sensible
- Q: How to summarize all this information?

Summarizing Data

- With lots of playtesting, there is a lot of data

 This is a good thing!
- But raw data is often just a pile of numbers
 - Rarely of interest
 - Or even sensible
- Q: How to summarize all this information?

Measures of central tendency

Examples? Pros and Cons?

Measure of Central Tendency: Mean

http://www.cdn.sciencebuddies.org/Files/463/9/MeanEquation.jpg

- Also called the "arithmetic mean" or "average"
- In Excel, =AVERAGE(range)
 =AVERAGEIF() averages if number

=AVERAGEIF() – averages if numbers meet certain condition (e.g., only if positive scores)

Measure of Central Tendency: Median

• Sort values low to high and take middle value

In Excel, =MEDIAN(range)

Measure of Central Tendency: Mode

- Number which occurs most frequently
- Not so useful in many cases
- → Best use for categorical data
 - e.g., most popular Champion group in League of Legends
- In Excel, =MODE()

http://pad3.whstatic.com/images/thumb/c/cd/Find-the-Mode-of-a-Set-of-Numbers-Step-7.jpg/aid130521-v4-728px-Find-the-Mode-of-a-Set-of-Numbers-Step-7.jpg

Depiction: Mean, Median, Mode?

Which to Use, Mean, Median, Mode?

- Mean many statistical tests with sample
 - Estimator of population mean
 - Uses all data
- Median can be useful for skewed data
 - e.g., income data (US Census) or housing prices (Zillo)
 - e.g., Overwatch team (6 players): 5 people level 5, 1 person level 275
 - Mean is 50 not so useful since no one at this level
 - Median is 5 more representative
 - Does not use all data. "Resistant" to extremes (e.g., 275)
 - But what if were exam scores? Hard to "bring up" grade
- Mode can be useful primarily for categorical data
 - Most played League champion, most popular maze, ...

Other Measures of Position?

• May not always want center

– e.g., what are the most kills in a PUBG game?

• What other positions may be desired?

Other Measures of Position

- May not always want center
 - e.g., want to know
 best LoL performance

- Maximum / Minimum
 - Not discussed more
- Trimmed Mean
- Quartiles
- Percentiles

Trimmed Mean

- Take "trimming" off top and bottom (typically 5% or 10%)
 - Reduces effects of extreme values, like median
- In Excel, =TRIMMEAN(array, percent)

Blue – original mean Red – trimmed mean

http://support.minitab.com/en-us/minitab/17/histogram_mean_vs_trimmed_mean.png

Quartiles

- Sort values
- First quartile (Q1) is 25% from bottom
- Third quartile (Q3) is 75% from bottom
- (What is second quartile?)
- In Excel, =QUARTILE(array,n)

https://mathbitsnotebook.com/Algebra1/StatisticsData/quartileboxview2.png

https://www.hackmath.net/images/quartiles.png

Percentiles

- Generalization of quartiles
- Nth percentile is data point n% from bottom of data
- Interpolate as if in-between
- In Excel, =PERCENTILE(array,k) (k:0 to 1)

http://www.isical.ac.in/~jeexiiscore_normal/PercentilesAdvantages.htm

Summarizing Data, Part 2

- Ok, pile of numbers can now be summarized as one number
 - Mean, median, mode
- But is that enough?
- Q: What other major aspect of numbers haven't we summarized?

Measures of variation (*aka* measures of *dispersion*, or measures of *spread*)

Summarizing Data, Part 2

"Then there is the man who drowned crossing a stream with an average depth of six inches." – W.I.E. Gates

 Summarizing by single number rarely enough → need statement about dispersion (aka variation)

Above: does single number (mean) tell you enough about data?

Dispersion Overview (1 of 3)

-5

Dispersion Overview (2 of 3)

Is data clumped or spread out?

Dispersion Overview (3 of 3)

Is data clumped or spread out?

"Motion and Scene Complexity for Streaming Video Games"

What are Some Measures of Dispersion? → Groupwork

Group A: 0 6 12 18 26

Group A: 0 6 12 18 26 Group B: 0 18 20 22 26

- Different ways to report *dispersion* with **one** number?
- What are pros and cons of each?
- Icebreaker, Groupwork, Questions

https://web.cs.wpi.edu/~imgd2905/d24/groupwork/3dispersion/handout.html

Range

- Difference between smallest and largest value
- Somewhat obvious, but doesn't tell you much about "clumping"
 - Minimum may be zero
 - Maximum can be from outlier
 - Event not related to phenomena studied (e.g., 0 on project)
 - Maximum gets larger with # samples, so no "stable" point

In Excel, =MAX(array)-MIN(array)

Variance

- Compute mean of sample
- Compute how far each value in sample is from mean

 Some can be less than mean, some greater
 → So square this difference (what does squaring do?)
- Divide by number of sample values 1
 - The "-1" corrects "bias" when trying to estimate population variance using sample variance

Sample Variance =
$$s^2 = \frac{\sum(X - \overline{X})^2}{n - 1}$$

Variance Example

- Sample kills in *PUBG* matches
 - 12, 20, 16, 18, 19
 - What is sample variance?

<u>Kills</u>	<u>X – mean</u>	<u>(X – mea</u>	<u>an)²</u>
12	-5	25	
20	3	9	
16	-1	1	
18	1	1	
19	2	4	
<mark>s² = (25</mark> -	+9+1+1+4)/(5	- 1) = 40 / 4 =	10 kills squared
In Exce	l, =VAR(array)		"Larger" means "more spread"

... but units odd

Standard Deviation

- Square-root of variance
- Usually, use standard deviation instead of variance
 - Why? \rightarrow Same *units* as data (e.g., "kills" in previous example)
- Can compare standard deviation to mean (*coefficient* of variation, next)
- But first:
 - Mendenhall's **Empirical Rule**
 - Z-score

Average "distance" of points from mean С

$$c = \sqrt{(a^2 + b^2)}$$

$$\mathbf{s} = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$$

Mendenhall's Empirical Rule

- About 68% data within one standard deviation of mean
 - interval between
 mean-s and mean+s
 contains about 68%
 of data
- 2. About 95% within 2 standard deviations of mean
- Almost all data within 3 standard deviations of mean

For normal ("Bell curve") distribution

Z-Score

- Measure of how "far" from center (mean) single data point is
 - Not measure of dispersion for whole data set

https://www.animatedsoftware.com/pics/stats/sgzscor2.gif

<u>Example</u>	
Mean	469
Std dev	119
X	650
Z-score for X?	
(650 – 469)/119	1.52

X - X

Coefficient of Variation (CV)

- Size of standard deviation relative to mean
 - e.g., large sd & large mean, not so spread
 - but large sd & small mean, more spread
- Standard deviation divided by mean
 - Can do this since same units!
- CV is "unit-less", so measure of spread independent of quantity
 - E.g. seconds, clicks, spaces

Shown as percent (multiply by 100)

$$CV = \frac{s}{\overline{x}} \times 100$$

http://images.slideplayer.com/35/10391754/slides/slide_59.jpg

Same Means Different Standard Deviations Different Means Same Standard Deviations Different Means Different Standard Deviations

Semi-Interquartile Range

½ distance between Q3 (75th percentile) and Q1 (25th percentile)

http://www.bbc.co.uk/staticarchive/9629000486ef4b1a40efa565c162cb779e0bd82c.png

 <u>Guideline</u>: use semi-interquartile (SIQR) for index of dispersion whenever using median as index of central tendency

Index of Dispersion Example

(sorted) Lap Times	• First sort Then com	nute
1.9	$M_{000} = 4.4$	
2.7	- Ivieal - 4.4	
3.9	- IVIIN = 1.9, IVIAX = 5.9	
4.1	– Median = [16 / 2] = 8	$t^{th} = 4.5$
4.2	$- Q1 = 16 / 4 = 8^{th} = 4.2$	L
4.2	- Q3 = 3 * 16 / 4 = 12 th	= 5.1
4.4		
4.5		• -
4.5	• $SIQR = (Q3 - Q1) / 2$	= 0.5
4.8	 Variance 	= 0.96
4.9	• Stddev	= 0 98
5.1		- 0.50
5.1	 CV = stddev/mean 	= 0.22
5.3	 Range = max – min 	= 4
5.6	5	
5.9		

- Rank measures of dispersion by sensitivity to outliers
 - CoV
 - Range
 - Std Dev
 - Semi-interquartile Range

Groupwork

https://web.cs.wpi.edu/~imgd2905/d24/groupwork/4-outliereffect/handout.html

Ranking of Affect by Outliers?

Measure of Dispersion

- Range
- Standard Deviation
- Coefficient of Variation
- Semi-interquartile Range

Most to Least

Ranking of Affect by Outliers?

Measure of Dispersion

- Range
- Standard Deviation
- Coefficient of Variation
- Semi-interquartile Range

Most to Least

Range

susceptible

- Variance
 - Standard Deviation
 - Coefficient of Variation
- SIQR resistant

Only for quantitative data! categorical can't quantify spread since no 'distance' Instead, give categories for given percentile of samples e.g., "90% of samples are in 3 categories" (Pareto chart)

Depicting Dispersion in Charts

- Histogram
- Cumulative distribution
- Box-and-Whiskers
- Error Bars

Box-and-Whiskers Chart

- Way of showing variation
- Highlight middle 50% (interquartile range, IQR)
 – "Box"
- Lines go to smallest non-outlier
 - "Whiskers"
- Points indicate outliers
- Middle line shows median
- Sometimes with mean
- Outlier? → Data value "way out there", "far" from the rest
 - Formally, 1.5+ IQRs away from quartile
- Available in Excel

Also called "boxplot"

Outliers
Outliers

Maximum Value
Q3 (75th percentile)
Median
Mean
Q1 (25th percentile)
Minimum Value

http://support.sas.com/documentation/cdl/en/ vaug/65747/HTML/default/images/boxplot.png

https://support.office.com/en-us/article/Create-a-box-andwhisker-chart-62f4219f-db4b-4754-aca8-4743f6190f0d

Cumulative Distribution

- Cumulative amount of data with value or less
- Easy to see min, max, median
- Compare shapes of distributions

Demo: <u>lol-patches.xlsx</u>

Select column R (Bug Fixes) Sort low to high New column S for percent [=ROW()/164] Select column \rightarrow paste down all Select both column R and S Insert \rightarrow Scatter plot with lines

"Nerfs, Buffs and Bugs - Analysis of the Impact of Patching on League of Legends" <u>http://www.cs.wpi.edu/~claypool/papers/lol-crawler/</u>

Error Bars for Columns and Points

- Line through graph point parallel to axis with "caps"
- Denotes uncertainty (variation) in value
- X Excel: click "+" → "Error Bars" → "type"

- Often:
 - 1 standard deviation
- Can be (discuss later):
 - 1 standard error
 - 1 confidence interval

https://s3.amazonaws.com/cdn.graphpad.com/faq/804/images/804b.jpg

http://www.excel-easy.com/examples/images/error-bars/error-bars.png