IMGD 2905

Descriptive Statistics

Chapter 3

An Easy to Understand Guide to Statistics and Analytics

David M. Levine and David F. Stephan

Summarizing Data

- With lots of playtesting, there is a lot of data
- This is a good thing!
- But raw data is often just a pile of numbers
- Rarely of interest
- Or even sensible

- Q: How to summarize all this information?

Summarizing Data

- With lots of playtesting, there is a lot of data
- This is a good thing!
- But raw data is often just a pile of numbers
- Rarely of interest
- Or even sensible
- Q: How to summarize all this information?

Measures of central tendency Examples? Pros and Cons?

Measure of Central Tendency: Mean

The sum of the measurements

http://www.cdn.sciencebuddies.org/Files/463/9/MeanEquation.jpg

- Also called the "arithmetic mean" or "average"
- In Excel, =AVERAGE (range)
=AVERAGEIF () - averages if numbers meet certain condition (e.g., only if positive scores)

Measure of Central Tendency: Median

- Sort values low to high and take middle value

https://betterexplained.com/wp-content/uploads/average/median.png

http://www.nedarc.org/statisticalHelp/basicStatistics/measuresOfCenter/images/median.gif
- In Excel, =MEDIAN(range)

Measure of Central Tendency: Mode

- Number which occurs most frequently
- Not so useful in many cases
\rightarrow Best use for categorical data
- e.g., most popular Champion group in League of Legends
- In Excel, =MODE ()

http://pad3.whstatic.com/images/thumb/c/cd/Find-the-Mode-of-a-Set-of-Numbers

Depiction: Mean, Median, Mode?

(a)

(b)

(e)

Which to Use, Mean, Median, Mode?

- Mean many statistical tests with sample
- Estimator of population mean
- Uses all data
- Median can be useful for skewed data
- e.g., income data (US Census) or housing prices (Zillo)
- e.g., Overwatch team (6 players): 5 people level 5, 1 person level 275
- Mean is 50 - not so useful since no one at this level
- Median is 5 -more representative
- Does not use all data. "Resistant" to extremes (e.g., 275)
- But what if were exam scores? Hard to "bring up" grade
- Mode can be useful primarily for categorical data
- Most played League champion, most popular maze, ...

Other Measures of Position?

- May not always want center
- e.g., what are the most kills in a PUBG game?
- What other positions may be desired?

Other Measures of Position

- May not always want center
- e.g., want to know best LoL performance
- Maximum /

Minimum

- Not discussed more
- Trimmed Mean
- Quartiles
- Percentiles

Trimmed Mean

- Take "trimming" off top and bottom (typically 5% or 10\%)
- Reduces effects of extreme values, like median
- In Excel, =TRIMMEAN(array, percent) x国

Blue - original mean
Red - trimmed mean

Quartiles

- Sort values
- First quartile (Q1) is 25% from bottom
- Third quartile (Q3) is 75% from bottom
- (What is second quartile?)
- In Excel, =QUARTILE (array, n)
x囯

https://mathbitsnotebook.com/Algebra1/StatisticsData/quartileboxview2.png

Percentiles

- Generalization of quartiles
- $N^{\text {th }}$ percentile is data point $n \%$ from bottom of data
- Interpolate as if in-between
- In Excel, =PERCENTILE (array, k) (k: 0 to 1)

Summarizing Data, Part 2

- Ok, pile of numbers can now be summarized as one number
- Mean, median, mode
- But is that enough?
- Q: What other major aspect of numbers haven't we summarized?

Measures of variation
(aka measures of dispersion, or measures of spread)

Summarizing Data, Part 2

"Then there is the man who drowned crossing a stream with an average depth of six inches." - W.I.E. Gates

- Summarizing by single number rarely enough \rightarrow need statement about dispersion (aka variation)

Dispersion Overview (1 of 3)

Dispersion Overview (2 of 3)

Is data clumped or spread out?

Dispersion Overview (3 of 3)

Is data clumped or spread out?

"Motion and Scene Complexity for Streaming Video Games"

What are Some Measures of Dispersion? \rightarrow Groupwork

Groupwork

$$
\begin{array}{lllll}
\text { Group A: } 0 & 6 & 12 & 18 & 26 \\
\text { Group B: } 0 & 18 & 20 & 22 & 26
\end{array}
$$

- Different ways to report dispersion with one number?
- What are pros and cons of each?
- Icebreaker, Groupwork, Questions
https://web.cs.wpi.edu/~imgd2905/d24/groupwork/3dispersion/handout.html

Range

- Difference between smallest and largest value
- Somewhat obvious, but doesn't tell you much about "clumping"
- Minimum may be zero
- Maximum can be from outlier
- Event not related to phenomena studied (e.g., 0 on project)
- Maximum gets larger with \# samples, so no "stable" point X国 In Excel, =MAX(array)-MIN(array)

Project 2

Variance

- Compute mean of sample
- Compute how far each value in sample is from mean
- Some can be less than mean, some greater
\rightarrow So square this difference (what does squaring do?)
- Divide by number of sample values - 1
- The "-1" corrects "bias" when trying to estimate population variance using sample variance

Sample Variance $=\mathrm{s}^{2}=\frac{\sum(\mathrm{X}-\overline{\mathrm{X}})^{2}}{}$

$$
n-1
$$

Variance Example

- Sample kills in PUBG matches

$$
-12,20,16,18,19
$$

- What is sample variance?
- First, mean = 85 / 5 = 17

$\frac{\text { Kills }}{12}$	$\frac{X-\text { mean }}{}$	
	-5	25
20	3	9
16	-1	1
18	1	1
19	2	4

$s^{2}=(25+9+1+1+4) /(5-1)=40 / 4=10$ kills squared
In Excel, =VAR(array)

Standard Deviation

- Square-root of variance
- Usually, use standard deviation instead of variance
- Why? \rightarrow Same units as data (e.g., "kills" in previous example)
- Can compare standard deviation to mean (coefficient of variation, next)
- But first:
- Mendenhall's Empirical Rule
- Z-score

Average "distance" of points from mean
$c=\sqrt{\left(a^{2}+b^{2}\right)}$
Low Standard Deviation

A "thin" curve means that your winrates remain close to the mean average.

High Standard Deviation

winrates
A "fat" curve means that there is a wider spread of your winrates.

Mendenhall’s Empirical Rule

1. About 68% data within one standard deviation of mean

- interval between mean-s and mean+s contains about 68\% of data

2. About 95% within 2 standard deviations of mean
3. Almost all data within 3 standard deviations of mean

For normal ("Bell curve") distribution

Z-Score

- Measure of how "far" from center (mean) single data point is
- Not measure of dispersion for whole data set

https://www.animatedsoftware.com/pics/stats/sgzscor2.gif

Example	
Mean	469
Std dev	119
X	650
Z-score for $X ?$	
$(650-469) / 119$	1.52

Coefficient of Variation (CV)

- Size of standard deviation relative to mean
- e.g., large sd \& large mean, not so spread
- but large sd \& small mean, more spread
- Standard deviation divided by mean
- Can do this since same units!
- CV is "unit-less", so measure of spread independent of quantity
- E.g. seconds, clicks, spaces

Shown as percent (multiply by 100)

$$
C V=\frac{S}{\bar{x}} \times 100
$$

http://images.slideplayer.com/35/10391754/slides/slide_59.jpg

Same Means DifferentStandard Deviations

What is the relative CV for each curve?

Different Means Same Standard Deviations

Different Means DifferentStandard Deviations

Semi-Interquartile Range

- $1 / 2$ distance between Q3 ($75^{\text {th }}$ percentile) and Q1 ($25^{\text {th }}$ percentile)

http://www.bbc.co.uk/staticarchive/9629000486ef4b1a40efa565c162cb779e0bd82c.png

$$
\frac{\mathrm{Q} 3-\mathrm{Q} 1}{2}
$$

- Guideline: use semi-interquartile (SIQR) for index of dispersion whenever using median as index of central tendency

Index of Dispersion Example

(sorted) Lap Times	
1.9	- First, sort. Then, compute:
2.7	- Mean = 4.4
3.9	- Min = 1.9, $\mathrm{Max}=5.9$
4.1	- Median $=[16 / 2]=8^{\text {th }}=4.5$
4.2	- Q1 = 16/4 = $8^{\text {th }}=4.1$
4.2	$-\mathrm{Q} 3=3 * 16 / 4=12^{\text {th }}=5.1$
4.4	
4.5	
4.5	- SIQR = (Q3-Q1) / $2=0.5$
4.8	- Variance $=0.96$
4.9	- Stddev $=0.98$
5.1	- $C V=$ stddev/mean $=0.22$
5.3	- Range $=\max -\min =4$
5.6	
5.9	

Groupwork

- Rank measures of dispersion by sensitivity to outliers
- CoV
- Range
- Std Dev
- Semi-interquartile Range

http://www.a-
levelmathstutor.com/images/statistics/outliers-graph01.jpg
https://web.cs.wpi.edu/~imgd2905/d24/groupwork/4-outliereffect/handout.html

Ranking of Affect by Outliers?

Measure of Dispersion
Most to Least

- Range
- Standard Deviation
- Coefficient of Variation
- Semi-interquartile Range

Ranking of Affect by Outliers?

Measure of Dispersion

- Range
- Standard Deviation
- Coefficient of Variation
- Semi-interquartile Range

Most to Least

- Range
susceptible
- Variance
- Standard Deviation
- Coefficient of Variation
- SIQR
resistant

Only for quantitative data!
categorical can't quantify spread since no 'distance' Instead, give categories for given percentile of samples
e.g., "90\% of samples are in
3 categories" (Pareto chart)
e.g., "90\% of samples are in
3 categories" (Pareto chart)

outlier result(green)

outlier points(red)

Depicting Dispersion in Charts

- Histogram
- Cumulative distribution
- Box-and-Whiskers
- Error Bars

Box-and-Whiskers Chart

- Way of showing variation
- Highlight middle 50\% (interquartile range, IQR)
- "Box"
- Lines go to smallest non-outlier - "Whiskers"
- Points indicate outliers
- Middle line shows median
- Sometimes with mean
- Outlier? \rightarrow Data value "way out there", "far" from the rest
- Formally, 1.5+ IQRs away from quartile
- Available in Excel

Also called "boxplot"

Cumulative Distribution

- Cumulative amount of data with value or less
- Easy to see min, max, median
- Compare shapes of distributions

Demo: lol-patches.x|sx
Select column R (Bug Fixes)
Sort low to high

New column S for percent [=ROW()/164] Select column \rightarrow paste down all Select both column R and S Insert \rightarrow Scatter plot with lines
"Nerfs, Buffs and Bugs - Analysis of the Impact of Patching on League of Legends" http://www.cs.wpi.edu/~claypool/papers/lol-crawler/

Error Bars for Columns and Points

- Line through graph point parallel to axis with "caps"
- Denotes uncertainty (variation) in value
X 国 $\underset{\text { Excel: click " }+ \text { " }}{ } \rightarrow$ "Error Bars" \rightarrow "type"

- Often:
- 1 standard deviation
- Can be (discuss later):
- 1 standard error
- 1 confidence interval

[^0]
http://www.excel-easy.com/examples/images/error-bars/error-bars.png

[^0]: https://s3.amazonaws.com/cdn.graphpad.com/faq/804/images/804b.jpg

